Présentation

Article

1 - INTRODUCTION

2 - INSECTE « CAPTEUR SOLAIRE »

3 - INSECTE ÉMETTEUR DE LUMIÈRE « LED »

4 - APPROCHE BIO-INSPIRÉE : REPRODUCTION DE STRUCTURES NATURELLES

5 - CONCLUSION

Article de référence | Réf : RE243 v1

Approche bio-inspirée : reproduction de structures naturelles
Insectes et lumière : approche bio-inspirée des échanges électromagnétiques

Auteur(s) : Serge BERTHIER, Magali THOMÉ, Eloise VAN HOOIJDONK, Annick BAY

Date de publication : 10 févr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les liens entre lumière et insectes sont complexes. La lumière est essentielle à la vie, mais peut aussi s'avérer dangereuse, voire mortelle. Pour gérer ces échanges électromagnétiques entre le monde extérieur et l'organisme, la nature a développé aux interfaces des arthropodes (ailes et cuticule) des structures adaptées aux différentes contraintes. Cet article traite de l'interaction insecte - « lumière entrante », de la façon dont est optimisée l'absorption, et la surchauffe évitée. Il décrit le profil « capteur d'énergie solaire » de l'insecte. Dans une seconde partie, l’article aborde la lumière sortante, c'est-à-dire l'insecte « LED ». Par fluorescence ou bioluminescence, de nombreux insectes émettent de la lumière et ont beaucoup à nous apprendre sur son extraction ! Des pistes ou des réalisations bio-inspirées sont présentées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Insects and light: A bio-inspired approach of electromagnetic exchanges

The relationship between light and insects, like all other living organisms, is complex. Light is essential to life, but can also be dangerous, even deadly. To manage these electromagnetic interactions between the outer world and the body of arthropods in particular, nature has developed structures at the interfaces (wings and cuticle) adapted to different constraints.We deal first with incoming light, i.e. the “solar absorber” insect: how it optimizes the absorption, how it prevents overheating, etc. In a second part, we discuss outgoing light, or the “LED” insect. Many insects emit light by fluorescence or bioluminescence, and have much to teach us about its extraction. Bio-inspired avenues of research and achievements are presented.

Auteur(s)

  • Serge BERTHIER : Professeur, Université Paris Diderot (Paris, France), Université de Namur Belgique - Member of the UNESCO-UNISA chair in Nanotechnology, Cap Town, Afrique du Sud - Institut des nanosciences de Paris, UMR 7588, CNRS, Université Pierre et Marie Curie, Paris, France

  • Magali THOMÉ : Institut des nanosciences de Paris, UMR 7588, CNRS, Université Pierre et Marie Curie, Paris, France

  • Eloise VAN HOOIJDONK : Laboratoire de physique des solides, Biophotonic Group, Université de Namur, Namur, Belgique

  • Annick BAY : Laboratoire de physique des solides, Biophotonic Group, Université de Namur, Namur, Belgique

INTRODUCTION

Points clés

Domaine : Photonique, optique des solides, énergie solaire

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées : Spectroscopie, CVD, PVD

Domaines d'application : Énergie solaire, LED, verre, cosmétique

Principaux acteurs français : CNRS, universités

Industriels : Saint Gobain, Chanel

Contact : [email protected]

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re243


Cet article fait partie de l’offre

Éco-conception et innovation responsable

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Approche bio-inspirée : reproduction de structures naturelles

L'étude et la caractérisation des structures photoniques naturelles, animales comme végétales, a donné lieu à un très grand nombre de travaux qui ont clairement démontré leur efficacité et l'intérêt qu'il y aurait à les incorporer dans nos réalisations industrielles. On peut tenter de les reproduire, mais nos techniques sont actuellement peu adaptées à la réalisation de structures multi-échelles plus ou moins bien ordon-nées, du moins à grande échelle. Si on veut conserver cette complexité, la réalisation de moules et la prise d'empreintes est une voie intéressante.

Deux approches sont envisageables : la voie chimique par des méthodes sol-gel ou la voie physique par dépôt plasma (PVD). La première permet de réaliser des empreintes en de très nombreux matériaux, et semble a priori particulièrement adaptée à la reproduction de structures tridimensionnelles. En raison de la directivité des dépôts physiques, la seconde l'est plus pour des structures uni ou bidimensionnelles.

4.1 Méthode sol-gel

La méthode sol-gel a été employée tout d'abord pour reproduire la structure de surface des écailles d'un papilio (Papilio ulysses) et la transférer sur un verre à carreau (figure 16) . Cette surface est super-hydrophobe et colorée par interférence de couche mince. Ce sont ces deux propriétés qu'il s'agissait de reproduire.

Elle a ensuite été utilisée pour reproduire une structure plus complexe en TiO2 : les écailles de deux lépidoptères, le Morpho menelaus et le Morpho rhetenor, dont les structures multi-échelles, sensiblement identiques, sont présentées figure 17.

La méthode consiste à déposer par dip-coating une solution de précurseur...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Éco-conception et innovation responsable

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Approche bio-inspirée : reproduction de structures naturelles
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BERTHIER (S.) -   Iridescence. Les couleurs physiques des insectes.  -  Springer, France (2008). Trad. « Iridescence. Physical colors of insects », Springer New York (2010).

  • (2) - BERTHIER (S.) -   Photonique des Morphos.  -  Springer, France (2010).

  • (3) - BERTHIER (S.) -   Spectral selectivity of the tropical butterfly Prepona meander : a remarkable example of temperature auto-regulation.  -  Appl. Phys. A, 80, p. 1397 (2003).

  • (4) - SAISON (T.), PEROZ (C.), CHAUVEAU (V.), BERTHIER (S.), SANDERGARD (E.), ARRIBART (H.) -   Replication of butterfly wing and natural lotus leaf nanostructures by nanoimprint on silica sol-gel films.  -  Bioinsp. Biomim., 3, p. 046004 (2008).

  • (5) - BAY (A.), SARRAZIN (M.), VIGNERON (J.-P.) -   Search for an optimal light-extracting surface derived from the morphology of a firefly lantern.  -  Opt. Eng., 52(2) (2013).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Éco-conception et innovation responsable

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS