Présentation
En anglaisRÉSUMÉ
Pour les applications nécessitant le stockage et la conversion de grandes quantités d'énergie telles que le véhicule électrique et les énergies intermittentes renouvelables, des batteries présentant à la fois une grande densité d'énergie (kWh/kg), un coût faible (euros/kWh), une grande sécurité et une longue durée de vie sont nécessaires. Parmi les différentes technologies en développement, les batteries « tout solide » lithium métal polymère sont particulièrement prometteuses. Les verrous de cette technologie portent sur l'utilisation du lithium métal à l'électrode négative et sur le développement d'un électrolyte polymère permettant un fonctionnement à température ambiante. Les différentes stratégies développées portant sur les électrolytes polymères secs, électrolytes plastifiés, électrolytes gélifiés, électrolytes caoutchouteux sont présentés dans cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
For applications that require the storage and conversion of large quantities of energy such as electric vehicles and renewable intermittent energy systems, batteries combining high energy density (kWh/kg), low cost (euros/kWh), high reliability and long service life are necessary. Among various technologies under development, “all solid” lithium-metal-polymer batteries are particularly promising. The difficulties of this technology lie in the use of lithium metal at the negative electrode and the development of a polymer electrolyte allowing operation at room temperature. Different strategies developed based on dry polymer electrolytes, plasticized electrolytes, gelled electrolytes and rubber electrolytes are presented in this article.
Auteur(s)
-
Renaud BOUCHET : Professeur Grenoble INP, CNRS, LEPMI – UMR 5279, Saint Martin d'Hères, France
-
Trang N.T. PHAN : Maître de conférences - Aix-Marseille Université, CNRS, ICR – UMR 7273 - Équipe CROPS, Marseille, France
INTRODUCTION
Domaine : Stockage et conversion de l'énergie
Degré de diffusion de la technologie : Émergence | Croissance | Maturité
Technologies impliquées : Accumulateur/batteries
Domaines d'application : Véhicule électrique, énergie renouvelable
Principaux acteurs français :
Pôles de compétitivité : Tenerrdis, Capenergies, IAR
Centres de compétence : Réseau national sur le Stockage Électrochimique de l'Énergie, RS2E, associé au Labex « Store-Ex »
Industriels : Blue Solutions
Autres acteurs dans le monde : SEEO, DBM Energy
Contact : [email protected] ; [email protected]
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Innovations technologiques > Innovations en matériaux avancés > Électrolytes polymères pour les batteries au lithium métal > Qualités attendues d'un électrolyte polymère
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Qualités attendues d'un électrolyte polymère
Pour les applications batterie, le cahier des charges pour l'électrolyte polymère est le suivant :
-
une conductivité ionique suffisante à température ambiante (σ > 10–2 S/m) permettant d'approcher la performance d'un électrolyte liquide ;
-
un nombre de transport de l'ion lithium, t+, proche de l'unité. La majorité des électrolytes polymères connus à ce jour présente un nombre de transport de l'ion lithium < 0,5. Cela signifie qu'au maximum la moitié du courant qui traverse l'électrolyte est porté par les ions Li+, le reste étant porté par les anions. Cela a pour conséquence la formation, en cours de fonctionnement de la batterie, d'un gradient de concentration en sel dans l'épaisseur de l'électrolyte qui a des effets délétères pour la croissance dendritique et qui limite fortement la puissance des batteries ;
-
une stabilité électrochimique et thermique élevée. Dans une application batterie, la membrane d'électrolyte polymère est prise en sandwich entre les matériaux de l'électrode négative et de l'électrode positive. La stabilité thermique et électrochimique des électrolytes permet de faire fonctionner la batterie sur un large domaine de température et dans une fenêtre de potentiel compris entre 0 et 5 V versus Li+/Li ;
-
des propriétés mécaniques suffisantes. Cette qualité permet de bloquer la croissance des dendrites de lithium et, d'un point de vue technologique, permet une production industrielle à grande cadence par extrusion de films très mince (< 20 µm) et laminage de couches successives.
De nombreuses approches, que nous allons détailler dans les parties suivantes, ont été proposées pour répondre à ce cahier des charges.
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Qualités attendues d'un électrolyte polymère
BIBLIOGRAPHIE
-
(1) - ARMAND (M.), CHABAGNO (J.M.), DUCLOT (M.J.) - * - In Fast ion transport in solids electrodes and electrolytes, (V.P.), MUNDY (J.-N.) et SHENOY (G.K.), Ed., North-Holland, Amsterdam, p. 131-136 (1979).
-
(2) - WONG (S.), ZAX (D.B.) - * - Electrochimica Acta, 42, p. 3513-3518 (1997).
-
(3) - CROCE (F.), APPETECHI (G.B.), PERSI (L.), SCROSATI (B.) - * - Nature, 394, p. 456-458 (1998).
-
(4) - KUMAR (B.), SCANLON (L.G.) - * - Solid State Ionics, 124, p. 239-254 (1999).
-
(5) - CROCE (F.), CURINI (R.), MARTINELLI (A.), PERSI (L.), RONCI (F.), SCROSATI (B.), CAMINITI (R.) - * - The Journal of Physical Chemistry B, 103, p. 10632-10638 (1999).
-
(6) - LIU (C.), IMANISHI (N.), ZHANG (T.), HIRANO (A.), TAKEDA (Y.), YAMAMOTO (O.), YANG (J.) - * - Journal...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive