Présentation
En anglaisRÉSUMÉ
Pour les applications nécessitant le stockage et la conversion de grandes quantités d'énergie telles que le véhicule électrique et les énergies intermittentes renouvelables, des batteries présentant à la fois une grande densité d'énergie (kWh/kg), un coût faible (euros/kWh), une grande sécurité et une longue durée de vie sont nécessaires. Parmi les différentes technologies en développement, les batteries « tout solide » lithium métal polymère sont particulièrement prometteuses. Les verrous de cette technologie portent sur l'utilisation du lithium métal à l'électrode négative et sur le développement d'un électrolyte polymère permettant un fonctionnement à température ambiante. Les différentes stratégies développées portant sur les électrolytes polymères secs, électrolytes plastifiés, électrolytes gélifiés, électrolytes caoutchouteux sont présentés dans cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
For applications that require the storage and conversion of large quantities of energy such as electric vehicles and renewable intermittent energy systems, batteries combining high energy density (kWh/kg), low cost (euros/kWh), high reliability and long service life are necessary. Among various technologies under development, “all solid” lithium-metal-polymer batteries are particularly promising. The difficulties of this technology lie in the use of lithium metal at the negative electrode and the development of a polymer electrolyte allowing operation at room temperature. Different strategies developed based on dry polymer electrolytes, plasticized electrolytes, gelled electrolytes and rubber electrolytes are presented in this article.
Auteur(s)
-
Renaud BOUCHET : Professeur Grenoble INP, CNRS, LEPMI – UMR 5279, Saint Martin d'Hères, France
-
Trang N.T. PHAN : Maître de conférences - Aix-Marseille Université, CNRS, ICR – UMR 7273 - Équipe CROPS, Marseille, France
INTRODUCTION
Domaine : Stockage et conversion de l'énergie
Degré de diffusion de la technologie : Émergence | Croissance | Maturité
Technologies impliquées : Accumulateur/batteries
Domaines d'application : Véhicule électrique, énergie renouvelable
Principaux acteurs français :
Pôles de compétitivité : Tenerrdis, Capenergies, IAR
Centres de compétence : Réseau national sur le Stockage Électrochimique de l'Énergie, RS2E, associé au Labex « Store-Ex »
Industriels : Blue Solutions
Autres acteurs dans le monde : SEEO, DBM Energy
Contact : [email protected] ; [email protected]
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Innovations technologiques > Innovations en matériaux avancés > Électrolytes polymères pour les batteries au lithium métal > Fabrication de la batterie lithium métal polymère
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Fabrication de la batterie lithium métal polymère
5.1 Éléments constitutifs des batteries LMP
Les batteries LMP sont constituées de films de trois principaux composants : un feuillard de lithium, un film mince d'électrolyte polymère et une électrode positive composite contenant le matériau électrochimiquement actif (figure 7). Les électrodes composites sont des électrodes volumiques pour lesquelles la réaction électrochimique est distribuée dans le volume de l'électrode à la surface des particules de matériaux actifs. Ce sont des matériaux composites complexes qui doivent présenter plusieurs fonctionnalités : une proportion maximale du matériau actif qui est le réservoir d'énergie, un adjuvant conducteur électronique (principalement du carbone nanométrique) pour distribuer les électrons en tout point de l'électrode et un liant polymère (l'électrolyte polymère en général) qui, dans le cas spécifique des batteries LMP, assure à la fois la cohésion mécanique de l'électrode et la distribution des ions en tout point de l'électrode. Les formulations standard sont de 70 à 80 % en poids de matériaux actifs, de 15 à 25 % en poids d'électrolyte polymère et de 3 à 8 % en poids de carbone.
Les matériaux actifs de l'électrode positive sont potentiellement les mêmes que ceux des batteries lithium-ion ([AF 6 612], § 1), cependant leur choix est généralement limité par la stabilité électrochimique de l'électrolyte polymère. En effet, les électrolytes à base de POE ne sont stables que jusqu'à 3,8 à 4 V par rapport au couple Li+/Li, ce qui élimine les oxydes lamellaires du type oxyde de cobalt LiCoO2. Le choix des industriels se porte aujourd'hui sur la phase olivine phosphate de fer LiFePO4 qui présente un plateau en potentiel à 3,43 V vs Li+/Li et une capacité théorique raisonnable de 170 mAh/g. Ce matériau est particulièrement intéressant car il est non toxique, le fer est abondant et il est très...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Fabrication de la batterie lithium métal polymère
BIBLIOGRAPHIE
-
(1) - ARMAND (M.), CHABAGNO (J.M.), DUCLOT (M.J.) - * - In Fast ion transport in solids electrodes and electrolytes, (V.P.), MUNDY (J.-N.) et SHENOY (G.K.), Ed., North-Holland, Amsterdam, p. 131-136 (1979).
-
(2) - WONG (S.), ZAX (D.B.) - * - Electrochimica Acta, 42, p. 3513-3518 (1997).
-
(3) - CROCE (F.), APPETECHI (G.B.), PERSI (L.), SCROSATI (B.) - * - Nature, 394, p. 456-458 (1998).
-
(4) - KUMAR (B.), SCANLON (L.G.) - * - Solid State Ionics, 124, p. 239-254 (1999).
-
(5) - CROCE (F.), CURINI (R.), MARTINELLI (A.), PERSI (L.), RONCI (F.), SCROSATI (B.), CAMINITI (R.) - * - The Journal of Physical Chemistry B, 103, p. 10632-10638 (1999).
-
(6) - LIU (C.), IMANISHI (N.), ZHANG (T.), HIRANO (A.), TAKEDA (Y.), YAMAMOTO (O.), YANG (J.) - * - Journal...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive