Présentation

Article

1 - CONTEXTE

2 - QUALITÉS ATTENDUES D'UN ÉLECTROLYTE POLYMÈRE

3 - CLASSIFICATION DES ÉLECTROLYTES POLYMÈRES ET LEURS LIMITES

4 - ÉLECTROLYTES POLYMÈRES SECS À BASE DE COPOLYMÈRE À BLOCS

5 - FABRICATION DE LA BATTERIE LITHIUM MÉTAL POLYMÈRE

6 - CONCLUSION ET PERSPECTIVES

7 - GLOSSAIRE –DÉFINITION

Article de référence | Réf : RE234 v1

Classification des électrolytes polymères et leurs limites
Électrolytes polymères pour les batteries au lithium métal

Auteur(s) : Renaud BOUCHET, Trang N.T. PHAN

Relu et validé le 20 janv. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Pour les applications nécessitant le stockage et la conversion de grandes quantités d'énergie telles que le véhicule électrique et les énergies intermittentes renouvelables, des batteries présentant à la fois une grande densité d'énergie (kWh/kg), un coût faible (euros/kWh), une grande sécurité et une longue durée de vie sont nécessaires. Parmi les différentes technologies en développement, les batteries « tout solide » lithium métal polymère sont particulièrement prometteuses. Les verrous de cette technologie portent sur l'utilisation du lithium métal à l'électrode négative et sur le développement d'un électrolyte polymère permettant un fonctionnement à température ambiante. Les différentes stratégies développées portant sur les électrolytes polymères secs, électrolytes plastifiés, électrolytes gélifiés, électrolytes caoutchouteux sont présentés dans cet article.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Polymer Electrolytes for Lithium Metal Batteries

For applications that require the storage and conversion of large quantities of energy such as electric vehicles and renewable intermittent energy systems, batteries combining high energy density (kWh/kg), low cost (euros/kWh), high reliability and long service life are necessary. Among various technologies under development, “all solid” lithium-metal-polymer batteries are particularly promising. The difficulties of this technology lie in the use of lithium metal at the negative electrode and the development of a polymer electrolyte allowing operation at room temperature. Different strategies developed based on dry polymer electrolytes, plasticized electrolytes, gelled electrolytes and rubber electrolytes are presented in this article.

Auteur(s)

  • Renaud BOUCHET : Professeur Grenoble INP, CNRS, LEPMI – UMR 5279, Saint Martin d'Hères, France

  • Trang N.T. PHAN : Maître de conférences - Aix-Marseille Université, CNRS, ICR – UMR 7273 - Équipe CROPS, Marseille, France

INTRODUCTION

Points clés

Domaine : Stockage et conversion de l'énergie

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées : Accumulateur/batteries

Domaines d'application : Véhicule électrique, énergie renouvelable

Principaux acteurs français :

Pôles de compétitivité : Tenerrdis, Capenergies, IAR

Centres de compétence : Réseau national sur le Stockage Électrochimique de l'Énergie, RS2E, associé au Labex « Store-Ex »

Industriels : Blue Solutions

Autres acteurs dans le monde : SEEO, DBM Energy

Contact : [email protected] ; [email protected]

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re234


Cet article fait partie de l’offre

Véhicule et mobilité du futur

(80 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

3. Classification des électrolytes polymères et leurs limites

Les premiers électrolytes polymères solides secs (EPS) ont été obtenus à partir de sels de lithium, tels que LiClO4 ou LiBF4, et du poly(oxyéthylène) POE de haute masse molaire . Dans de tels systèmes, aucun solvant organique liquide n'est utilisé, le polymère hôte joue le rôle de solvant solide. Le POE contient des sites de coordination éthers qui permettent la dissociation des sels, ainsi qu'une structure macromoléculaire souple qui favorise le transport ionique. Néanmoins, la présence de zones cristallines dans le POE interfère avec le transport des ions qui nécessite une phase amorphe. Cela affecte la conductivité ionique à des températures inférieures à la température de fusion du POE autour de 65 oC. Au-dessus de cette température, la conductivité ionique augmente fortement (> 10–2 S/m), mais le POE devient un liquide visqueux et perd sa stabilité mécanique. Les batteries lithium métal polymères utilisant le POE sont donc a priori des batteries chaudes (80 à 100 oC), ce qui est une première limitation. Il a été montré par ailleurs qu'à ces températures les électrolytes POE n'entravent pas la croissance dendritique.

  • De nombreuses voies de recherche ont été explorées pour casser la cristallinité du polymère hôte à température ambiante. On peut citer les matériaux constitués de nano/microcharges inorganiques dispersées dans une matrice de polymère, appelé « électrolytes polymères composites ». Généralement, des oxydes inorganiques de haute surface spécifique sont utilisés, tels que SiO2 , TiO2 ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(80 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Classification des électrolytes polymères et leurs limites
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ARMAND (M.), CHABAGNO (J.M.), DUCLOT (M.J.) -   *  -  In Fast ion transport in solids electrodes and electrolytes, (V.P.), MUNDY (J.-N.) et SHENOY (G.K.), Ed., North-Holland, Amsterdam, p. 131-136 (1979).

  • (2) - WONG (S.), ZAX (D.B.) -   *  -  Electrochimica Acta, 42, p. 3513-3518 (1997).

  • (3) - CROCE (F.), APPETECHI (G.B.), PERSI (L.), SCROSATI (B.) -   *  -  Nature, 394, p. 456-458 (1998).

  • (4) - KUMAR (B.), SCANLON (L.G.) -   *  -  Solid State Ionics, 124, p. 239-254 (1999).

  • (5) - CROCE (F.), CURINI (R.), MARTINELLI (A.), PERSI (L.), RONCI (F.), SCROSATI (B.), CAMINITI (R.) -   *  -  The Journal of Physical Chemistry B, 103, p. 10632-10638 (1999).

  • (6) - LIU (C.), IMANISHI (N.), ZHANG (T.), HIRANO (A.), TAKEDA (Y.), YAMAMOTO (O.), YANG (J.) -   *  -  Journal...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(80 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS