Présentation
EnglishRÉSUMÉ
Le problème à trois corps circulaire restreint considère un vaisseau spatial de masse négligeable soumis à l’attraction de deux astres en mouvement circulaire. Sous ces hypothèses, le système admet cinq points d’équilibre dont deux situés sur l’axe des deux astres et proches du moins massif. L’étude de la dynamique fait apparaître l’existence d’orbites périodiques au voisinage de ces deux points, ainsi que de trajectoires naturellement convergentes et divergentes à partir des orbites. Ces trajectoires dites variétés invariantes forment un réseau de courants gravitationnels permettant des transferts à faible consommation. L’article présente la modélisation du problème à trois corps et les principaux résultats utiles pour la construction de missions spatiales.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Max CERF : Ingénieur en analyse de mission - Ariane Group, Les Mureaux, France
INTRODUCTION
Le problème à trois corps concerne le mouvement de trois points matériels en interaction gravitationnelle. Contrairement au problème à deux corps, il n’admet pas de solution analytique. Le problème est dit restreint lorsque l’un des corps est de masse négligeable, ce qui est le cas d’un véhicule spatial soumis à l’attraction de deux astres. Les deux astres suivent alors un mouvement képlérien, quasiment circulaire dans le cas des systèmes Soleil-Terre ou Terre-Lune.
Le problème circulaire restreint, bien que non intégrable, se prête davantage à l’étude. En raison de son importance pratique, il a fait l’objet de nombreux travaux depuis l’annonce des points d’équilibre colinéaires par Euler en 1767, puis triangulaires par Lagrange en 1772. Poincaré a effectué des travaux mathématiques sur l’existence d’orbites périodiques (1890), et la découverte à partir de 1906 de centaines d’astéroïdes troyens du système Soleil-Jupiter est venue confirmer la pertinence des modèles mathématiques.
Les points de Lagrange L1 et L2 sont situés sur l’axe des deux astres de part et d’autre de l’astre le moins massif. Ils sont particulièrement intéressants pour l’exploration de l’espace en raison de leur position stable vis-à-vis des astres attracteurs. Dans le système Soleil-Terre, ces points sont à 1,5 million de kilomètres de la Terre. Ils offrent un environnement thermique constant, propice à l’observation du Soleil en L1 (missions ISEE, SOHO, LISA) ou de l’espace en L2 (missions MAP, Gaia, Herschell-Planck, JWST). Dans le système Terre-Lune, ces points sont à 60 000 km de la Lune. Ils sont favorables à l’installation de stations spatiales permanentes comme cela avait été envisagé par Arthur Clarke dès 1950. Ces stations permettraient de desservir plus facilement la surface lunaire ou de partir à l’exploration du système solaire.
Ces projets de mission sont rendus possibles par l’existence d’orbites périodiques au voisinage des points L1 et L2. Les orbites de halo découvertes par Farquhar en 1966 ont une amplitude suffisante pour éviter leur occultation par la Lune et garder une liaison constante avec la Terre. Ces orbites sont associées à un ensemble de trajectoires y arrivant ou en repartant naturellement. Ces trajectoires appelées variétés invariantes résultent de courants gravitationnels intrinsèques à la dynamique du problème à trois corps. Les connexions entre variétés associées à différentes orbites forment un réseau complexe ouvrant la perspective de transferts spatiaux à bas coût vers la Lune ou plus loin.
Cet article présente les éléments de base du problème circulaire restreint, avec en particulier la détermination des points d’équilibre, la construction d’orbites périodiques et les stratégies de transferts utilisant les variétés invariantes.
MOTS-CLÉS
point de Lagrange orbite de halo variétés invariantes problème à trois corps circulaire restreint
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Transferts
La linéarisation au voisinage des points L1 et L2 (§ 2.1.2) montre des composantes stables et instables se superposant aux composantes périodiques. De la même manière, la linéarisation au voisinage d’une orbite de halo fait apparaître des composantes stables et instables appelées variétés invariantes de l’orbite.
3.1 Linéarisation au voisinage de l’orbite
Les équations (26) définissent un système différentiel autonome avec le vecteur d’état X = (x, y, z, vx , vy , vz ) formé des composantes de position et de vitesse dans RC.
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transferts
BIBLIOGRAPHIE
-
(1) - BATTIN (R.) - An Introduction to the Mathematics and Methods of Astrodynamics. - AIAA (1999).
-
(2) - FARQUHAR (R.W.) - The Control and Use of Libration Point Satellites. - Goddard Space Flight Center, NASA TR R-346 (1970).
-
(3) - GOMEZ (G.), MASDEMONT (J.J.), MONDELO (J.M.) - Libration Point Orbits: A Survey from the Dynamical Point of View. - International Conference on Libration Point Orbits and Applications, Girona, Spain (2002).
-
(4) - KOON (W.S.), LO (M.W.), MARSDEN (J.E.), ROSS (S.D.) - Dynamical Systems, the Three-Body Problem and Space Mission Design. - Marsden Books (2008).
-
(5) - MURRAY (C.D.), DERMOTT (S.F.) - Solar System Dynamics. - Cambridge University Press (1999).
-
(6) - RICHARDSON (D.L.) - Analytic Construction of Periodic Orbits...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive