Présentation
En anglaisAuteur(s)
-
Jean‐Pierre KREBS : Ingénieur de l’École centrale de Paris (ECP) - Docteur‐Ingénieur - Ingénieur en Chef des Équipements spatiaux à la Sodern
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Si la connaissance de l’univers a pu faire ces dernières années des avancées significatives, c’est surtout grâce aux progrès récents de l’optronique. L’apparition de nouveaux détecteurs [par exemple les dispositifs à transfert de charges (DTC)] liés à de nouveaux composants électroniques tels que le microprocesseur et les ASICs et à de nouvelles techniques de traitement du signal (compression de données) a permis de réaliser des systèmes optroniques très performants embarquables sur des satellites artificiels de la Terre, sur des sondes interplanétaires et des véhicules spatiaux.
Depuis quelques années, l’homme s’intéresse de plus en plus à la planète Terre et plus particulièrement à son environnement immédiat (évolution des océans, des terres immergées, météorologie, couche d’ozone...). Ceci a nécessité l’emploi d’autres types de détecteurs (infrarouges par exemple) et le développement de nouveaux instruments associant les techniques les plus modernes de l’optique et de l’électronique.
Par ailleurs, les besoins en servitudes de ces plates‐formes satellitaires nécessitent bien souvent des dispositifs de stabilisation et de pointage de plus en plus précis qui requièrent l’utilisation d’éléments optroniques.
Les applications de l’optronique spatiale peuvent être classées en quatre rubriques suivant les applications concernées :
-
les systèmes de contrôle d’attitude ;
-
les dispositifs d’observation et de prise de vue ;
-
l’instrument scientifique embarqué ;
-
les télécommunications par liaisons optiques.
Au cours de cet article nous allons nous limiter plus particulièrement aux deux premières : le contrôle d’attitude et l’observation de la Terre.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Systèmes optroniques > Capteurs d’attitude et dispositifs d’imagerie pour satellites > Plans focaux des caméras d’observation
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Plans focaux des caméras d’observation
Dans ce paragraphe sont présentés quelques exemples de plans focaux de caméras destinées à faire de l’imagerie spatiale à partir de satellites d’observation. Cette mission concerne principalement la perception des contours et la détermination des caractéristiques physiques et biologiques des scènes observées sur la surface terrestre. Les instruments développés doivent donc avoir une haute résolution spatiale (de l’ordre de quelques mètres) mais aussi présenter une excellente stabilité pour ne pas dégrader la résolution et la distorsion de l’image.
La reconnaissance de « l’objet » terrestre s’effectue par la mesure du flux lumineux diffusé ou rayonné par cet objet dans diverses bandes spectrales judicieusement sélectionnées. La télédétection montre que chaque espèce, minérale ou végétale, se caractérise par sa courbe de réflectance spectrale, appelée aussi signature spectrale de la scène observée. La figure 22 montre l’allure générale de ces spectres pour quelques classes importantes de végétation et autres objets terrestres typiques. Donc, en fonction de l’application recherchée (ressources terrestres, végétation, surveillance des océans, observation militaire...), l’instrument d’observation possédera des bandes spectrales spécifiques à la mission [5] [6].
5.1 Principe de fonctionnement
En fonction des exigences de champ et de résolution requises, l’optimisation de la mission résultera d’un compromis entre :
-
le choix de l’orbite ;
-
l’altitude ;
-
les critères de précision et de stabilité du contrôle d’attitude ;
-
le dimensionnement de l’instrument de prises de vue (principe de balayage, type de détecteur, système optique).
Ainsi, un instrument d’observation à haute résolution travaillant dans le domaine visible et proche infrarouge doit bénéficier d’un éclairement solaire peu variable. Il en résulte qu’à une latitude donnée, l’heure locale de passage du satellite doit rester à peu près constante. On choisira donc une orbite héliosynchrone, c’est‐à‐dire que la précession du plan de l’orbite du satellite est synchrone avec la direction du Soleil, en d’autres termes,...
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Plans focaux des caméras d’observation
BIBLIOGRAPHIE
-
(1) - CNES - Techniques et technologies des véhicules spatiaux (cours de technologie spatiale) - . 2 tomes, 1 864 pages, Édit. CEPADUES (1994).
-
(2) - * - Members of the Technical Staff Attitude Systems Operation, Computer Sciences Corporation : Spacecraft attitude determination and control. James R. WERTZ, Microcosm Inc., Torrance, CA (USA) – Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, The Netherlands, 858 pages (1990).
-
(3) - DESVIGNES (F.) - Détection et détecteurs de rayonnements optiques - . Masson, 346 pages (1987).
-
(4) - MEIJER (G.C.M.), Van HERWAARDEN (S.) - Thermal Sensors - . Institute of Physics Publishing, 304 pages (1994).
-
(5) - VERGER (F.) - Observation de la Terre par les satellites - . Collection « Que sais-je », no 1 989.
-
(6) - CNES - Télédétection...
1 Constructeurs et fournisseurs
Ball Aerospace (USA)
Goodrich (Division of Barnes Engineering and Ithaco) (USA)
Geofizika (Russia)
Jena-Optronik GmbH (Germany)
LMA (Lockheed Martin Astronautics) (USA)
NT Space (Nec Toshiba Space) (Japan)
Galileo Avionica Optics and Space Division (Italy)
EADS-Sodern (France)
HAUT DE PAGE
CNES (Centre National d’Études Spatiales) :Siège (Paris) & Centre de Toulouse
ASE/ESA (Agence Spatiale Européenne/European Space Agency) :Siège (Paris) & ESTEC (Noordwijk – Pays-Bas)
ISRO (Indian Space Research Organization)
NASA (National Aeronautics and Space Administration)
GSFC (Goddard Space Flight Center) (Washington)
JAXA (Japan Aerospace Exploration Agency)
HAUT DE PAGECet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive