Présentation
En anglaisRÉSUMÉ
Dans l'aéronautique, hormis les facteurs humains, le givrage reste encore à ce jour la première cause d 'accident. Des gouttelettes d'eau surfondues, abritées par certains nuages, viennent heurter la structure de l'aéronef, y givrent en masse, formant rapidement de la glace en grande quantité. Ce phénomène modifie de manière conséquente le profil aérodynamique, et peut conduire jusqu'à l'arrêt des moteurs pertubés par cette glace "avalée". Le recours à la simulation numérique permet d'optimiser les systèmes de protection, qui par effet thermique ou mécanique limitent la quantité de glace se déposant. Les essais en soufflerie gibrante viennent compléter cette approche.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Auteur(s)
-
Didier GUFFOND : Chargé de mission « Givrage des aéronefs » - Centre français de recherche aérospatiale (ONERA), France
INTRODUCTION
Identifié comme risque majeur dès le début de l'aéronautique, le givrage reste à ce jour la première cause d'accident hors facteurs humains.
Le givrage résulte de la captation et de la congélation plus ou moins rapide de gouttelettes d'eau surfondues (liquides à une température négative) présentes dans certains nuages traversés par les aéronefs. Les gouttelettes d'eau heurtent la partie frontale des différentes structures de l'appareil, rompant l'état instable de surfusion et conduisant à la formation de glace. En absence de protection, cette accumulation de glace peut provoquer, d'une part, des modifications très importantes des profils aérodynamiques des voilures, et d'autre part, des extinctions des moteurs dues à l'ingestion de glace se détachant des entrées d'air. Des systèmes de protection existent, permettant par des actions mécaniques ou thermiques de limiter la quantité de glace se déposant sur l'aéronef.
Pour étudier ce phénomène, optimiser les systèmes de protection et vérifier leur efficacité dans tout le domaine de vol, tout en limitant le nombre d'essais en vol, deux moyens complémentaires sont utilisés : la simulation numérique et les essais en soufflerie givrante. Pour les simulations numériques, le présent document analyse les différents modèles et donne le détail des termes négligés. Pour les essais en soufflerie, la dimension de la maquette ne permet généralement pas de travailler à échelle 1 et il est nécessaire d'utiliser une maquette à échelle réduite. L'approche classique par analyse dimensionnelle ne permet pas dans le cas du givrage de définir des lois de similitude exactes, raison pour laquelle des règles de similitude approchées ont été définies.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Givrage, type de glace et protections contre le givrage
1.1 Givrage atmosphérique
Les conditions givrantes résultent de l'existence simultanée d'une température négative et de gouttes d'eau sous forme liquide (nuage, brouillard). Compte tenu de leur faible dimension (de 10 à 40 μm), ces gouttes restent liquides bien que la température puisse atteindre – 40 oC.
Généralement un aéronef peut rencontrer des conditions givrantes à une altitude comprise entre 900 et 5 800 mètres (3 000 et 19 000 pieds) et à des températures comprise entre 0 et – 20 oC (figure 1).
Si les gros avions ne rencontrent ces conditions que dans les phases de montée ou de descente, les avions de transport régionaux ou les hélicoptères peuvent rencontrer des conditions givrantes durant la totalité du vol. Il existe deux types de nuages givrants (figure 2) : les stratus de grande étendue dont la teneur en eau liquide est relativement peu élevée (de 0,1 à 0,9 g/m3), occasionnant un givrage dit continu, et d'autre part les cumulus de plus faible étendue ayant des teneurs en eau liquide plus importantes pouvant atteindre 3 g/m3 et donnant lieu à un givrage dit intermittent. Des abaques, issues de données statistiques, donnent pour chaque type de nuage les corrélations entre les diamètres des gouttes, les teneurs en eau liquide et les températures.
Les conditions givrantes sont définies par trois paramètres :
-
la température de l'air (OAT pour Outside Air Température ) ;
-
la teneur en eau liquide exprimée en gramme d'eau par mètre cube d'air (LWC pour Liquid Water Content ) ;
-
le diamètre des gouttes exprimé en μm.
Trois classes de tailles de gouttes correspondant à différents processus de formation ont été définies :
-
les conditions givrantes dites classiques (figure 3) entre 15 et 50 μm ;
-
la bruine givrante (figure 4) avec des gouttes entre 50 et 500 μm ;
-
la pluie givrante (figure 5) avec des gouttes de 500 à 4 μm.
Les gouttes ayant un diamètre supérieur à 50 μm sont appelées SLD (Supercooled Large Droplet ;...
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Givrage, type de glace et protections contre le givrage
BIBLIOGRAPHIE
-
(1) - LANGMUIR (I.), BOLDGETT (K.A.) - Mathematical investigation of water droplet trajectories. - Army Air Forces Technical Report, no 5418, fev. 1946.
-
(2) - MAKKONEN (L.J.) - Heat transfer and icing of a rough cylinder. - Journal of cold region science and technology, 10, p. 105-116 (1985).
-
(3) - MESSINGER (B.L.) - Equilibrium temperature of unheated icing surface as a function of airspeed. - Journal of Aeronautical SC, vol. 20-21, p. 29 (1953).
-
(4) - WRIGHT (W.B.), POTAPCZUK (M.G.) - Semi empirical modelling of sld physics. - Proc 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, janv. 2004.
-
(5) - IULIANO (E.), MINGIONE (G.), PETRSITO (F.), HERVY (F.) - Eulerian modelling of SLD physics towards more realistic aircraft icing simulation. - AIAA 2010-7676.
-
(6) - HONSEK (R.), HABASHI...
ANNEXES
AC-9C Aircraft Icing Technology Committee organise deux réunions par an (Spring et Fall meetings) http://www.sae.org/events/icing/specialevents.htm
Congrès organisé annuellement par l'AIAA. AIAA Aviation and Aeronautics Forum and Exposition https://www.aiaa.org/aviation
HAUT DE PAGE
BEA http://www.bea.aero/index.php
NTSB http://www.ntsb.org
ONERA http://www.onera.fr/
CIRA (Centro Italiano Di Ricerche Aerospaziali) http://www.cira.it/en
NASA Glenn Research Center http://www.nasa.gov/centers/glenn/home/#.UukZ-oaFfh5 http://facilities.grc.nasa.gov/irt/
...Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive