Présentation

Article

1 - MODES DE FONCTIONNEMENT

2 - PERFORMANCES

Article de référence | Réf : W4110 v1

Performances
Filtration membranaire (OI, NF, UF) - Mise en œuvre et performances

Auteur(s) : Pierre AIMAR

Date de publication : 10 août 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les opérations de filtration membranaire (nano-, ultra-, micro- et osmose inverse) séparent un flux d’alimentation en deux, le rétentat et le perméat, avec toutefois la particularité d’une circulation du liquide tangentiellement à la membrane. Ces membranes spécifiques présentent des pores plus petits que ceux de la filtration classique, elles peuvent ainsi filtrer des suspensions contenant des composants de très petites tailles. Cet article détaille le mode de fonctionnement, l’approche théorique et les performances atteintes par les filtrations membranaires.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

 

Auteur(s)

  • Pierre AIMAR : Laboratoire de génie chimique – UMR CNRS/INP/UPS Université Paul-Sabatier (Toulouse)

INTRODUCTION

Les opérations de filtration membranaire (nanofiltration NF, ultrafiltration UF, microfiltration NF), dans lesquelles on inclut ici l’osmose inverse (OI), bien que les membranes qui y sont utilisées ne soient pas poreuses, peuvent être présentées comme des séparateurs tripolaires qui divisent un flux d’alimentation en deux : le rétentat et le perméat (qui est constitué du liquide, solvant et une partie des solutés, qui a traversé les membranes). La particularité de la filtration membranaire, par rapport à la filtration classique, réside dans le fait que l’on fait circuler, tangentiellement à la membrane, le liquide à filtrer de manière à limiter, par effet de cisaillement hydrodynamique en paroi, l’accumulation de la matière retenue : ce dernier mécanisme, lorsqu’il se développe en solution, est appelé polarisation de concentration et, lorsqu’il se traduit par un dépôt de matière sur la membrane, devient un colmatage de cette dernière. Pour cette raison également, les membranes de filtration peuvent traiter des suspensions dont les composants sont de tailles bien inférieures à ceux des suspensions concernées par la filtration conventionnelle. Cela se traduit par des diamètres de pores bien plus petits dans les membranes que dans les media filtrants.

Dans le tableau 1, on a regroupé les principales caractéristiques des opérations de séparation concernées par ce dossier.

Le lecteur pourra trouver un exposé général concernant toutes ces techniques dans les dossiers Filtration membranaire (OI, NF, UF)- Présentation des membranes et modules, Filtration membranaire (OI, NF, UF)- Caractérisation des membranes et Filtration membranaire (OI, NF, UF)- Applications en traitement des eaux.

 

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-w4110


Cet article fait partie de l’offre

Technologies de l'eau

(109 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Performances

2.1 Modèles de calcul de flux (approche théorique)

HAUT DE PAGE

2.1.1 Loi de Darcy

Les membranes utilisées en séparation liquide peuvent couramment être considérées comme des milieux poreux idéaux, même si elles ont un caractère bidimensionnel marqué. Cela se traduit par une proportionnalité entre la densité de flux obtenue J et la différence de pression appliquée Δp, qui s’écrit (loi de Darcy) :

avec :

Lp
 : 
coefficient de perméabilité de la membrane (m)
Rh
 : 
résistance hydraulique
µp
 : 
viscosité du solvant qui traverse le filtre.

Compte tenu de la variation de viscosité de l’eau avec la température, le flux mesuré J varie d’environ 3 % par degré, pour des températures variant de 10 à 50 ˚C. Cette sensibilité, relativement importante, nécessite d’être prise en compte lorsque l’on caractérise la perméabilité des membranes. Le flux en fonctionnement peut, par contre, varier avec la température dans des proportions différentes, en fonction de la sensibilité des phénomènes limitant ce paramètre.

HAUT DE PAGE

2.1.2 Détermination de la perméabilité

La détermination de la perméabilité de membrane, selon la loi de Darcy, suppose que l’on mesure des flux pour plusieurs valeurs de pression appliquée ; ce n’est que si une telle série de mesures se traduit graphiquement par une droite passant par l’origine que l’on peut déduire, de sa pente, la perméabilité. Pour des membranes très perméables (membranes de microfiltration de...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies de l'eau

(109 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Performances
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PETSEV (D.N.), STAROV (V.M.), IVANOV (I.B.) -   Concentrated dispersions of charged colloidal particles: sedimentation, ultrafiltration and diffusion  -  . Colloids and Surfaces A 81, p. 65-81 (1993).

  • (2) - BACCHIN (P.), SI-HASSEN (D.), STAROV (V.), CLIFTON (M.J.), AIMAR (P.) -   A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions  -  . Chem. Eng. Sci. 57, p. 77-91 (2002).

  • (3) - Cahier CFM no 2 -   Micro et ultrafiltration : Conduite des essais pilotes, traitements des eaux et effluents  -  . Philippe Aptel/Philippe Moulin/Francis Quemeneur, édition CFM (2003).

  • (4) - VANDEZANDE (P.), GEVERS (L.E.M.), PAUL (J.S.), VANKELECOM (I.F.J.), JACOBS (P.A.), VANR REIX, al -   High throughput screening for rapid development of membranes and membrane processes  -  . Journal of Membrane Science, 250(1-2), p. 305-310 (2005).

  • (5) - COMBE (C.), GUIZARD (C.), AIMAR (P.), SANCHEZ (V.) -   Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane  -  . Journal...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies de l'eau

(109 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS