Présentation
EnglishRÉSUMÉ
Les opérations de filtration membranaire (nano-, ultra-, micro- et osmose inverse) séparent un flux d’alimentation en deux, le rétentat et le perméat, avec toutefois la particularité d’une circulation du liquide tangentiellement à la membrane. Ces membranes spécifiques présentent des pores plus petits que ceux de la filtration classique, elles peuvent ainsi filtrer des suspensions contenant des composants de très petites tailles. Cet article détaille le mode de fonctionnement, l’approche théorique et les performances atteintes par les filtrations membranaires.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre AIMAR : Laboratoire de génie chimique – UMR CNRS/INP/UPS Université Paul-Sabatier (Toulouse)
INTRODUCTION
Les opérations de filtration membranaire (nanofiltration NF, ultrafiltration UF, microfiltration NF), dans lesquelles on inclut ici l’osmose inverse (OI), bien que les membranes qui y sont utilisées ne soient pas poreuses, peuvent être présentées comme des séparateurs tripolaires qui divisent un flux d’alimentation en deux : le rétentat et le perméat (qui est constitué du liquide, solvant et une partie des solutés, qui a traversé les membranes). La particularité de la filtration membranaire, par rapport à la filtration classique, réside dans le fait que l’on fait circuler, tangentiellement à la membrane, le liquide à filtrer de manière à limiter, par effet de cisaillement hydrodynamique en paroi, l’accumulation de la matière retenue : ce dernier mécanisme, lorsqu’il se développe en solution, est appelé polarisation de concentration et, lorsqu’il se traduit par un dépôt de matière sur la membrane, devient un colmatage de cette dernière. Pour cette raison également, les membranes de filtration peuvent traiter des suspensions dont les composants sont de tailles bien inférieures à ceux des suspensions concernées par la filtration conventionnelle. Cela se traduit par des diamètres de pores bien plus petits dans les membranes que dans les media filtrants.
Dans le tableau 1, on a regroupé les principales caractéristiques des opérations de séparation concernées par ce dossier.
Le lecteur pourra trouver un exposé général concernant toutes ces techniques dans les dossiers , et .
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Technologies de l'eau
(110 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Performances
2.1 Modèles de calcul de flux (approche théorique)
Les membranes utilisées en séparation liquide peuvent couramment être considérées comme des milieux poreux idéaux, même si elles ont un caractère bidimensionnel marqué. Cela se traduit par une proportionnalité entre la densité de flux obtenue J et la différence de pression appliquée Δp, qui s’écrit (loi de Darcy) :
avec :
- Lp :
- coefficient de perméabilité de la membrane (m)
- Rh :
- résistance hydraulique
- µp :
- viscosité du solvant qui traverse le filtre.
Compte tenu de la variation de viscosité de l’eau avec la température, le flux mesuré J varie d’environ 3 % par degré, pour des températures variant de 10 à 50 ˚C. Cette sensibilité, relativement importante, nécessite d’être prise en compte lorsque l’on caractérise la perméabilité des membranes. Le flux en fonctionnement peut, par contre, varier avec la température dans des proportions différentes, en fonction de la sensibilité des phénomènes limitant ce paramètre.
HAUT DE PAGE2.1.2 Détermination de la perméabilité
La détermination de la perméabilité...
Cet article fait partie de l’offre
Technologies de l'eau
(110 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Performances
BIBLIOGRAPHIE
-
(1) - PETSEV (D.N.), STAROV (V.M.), IVANOV (I.B.) - Concentrated dispersions of charged colloidal particles: sedimentation, ultrafiltration and diffusion - . Colloids and Surfaces A 81, p. 65-81 (1993).
-
(2) - BACCHIN (P.), SI-HASSEN (D.), STAROV (V.), CLIFTON (M.J.), AIMAR (P.) - A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions - . Chem. Eng. Sci. 57, p. 77-91 (2002).
-
(3) - Cahier CFM no 2 - Micro et ultrafiltration : Conduite des essais pilotes, traitements des eaux et effluents - . Philippe Aptel/Philippe Moulin/Francis Quemeneur, édition CFM (2003).
-
(4) - VANDEZANDE (P.), GEVERS (L.E.M.), PAUL (J.S.), VANKELECOM (I.F.J.), JACOBS (P.A.), VANR REIX, al - High throughput screening for rapid development of membranes and membrane processes - . Journal of Membrane Science, 250(1-2), p. 305-310 (2005).
-
(5) - COMBE (C.), GUIZARD (C.), AIMAR (P.), SANCHEZ (V.) - Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane - . Journal...
Cet article fait partie de l’offre
Technologies de l'eau
(110 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive