Présentation
En anglaisAuteur(s)
-
Jean POULAIN : Ingénieur de l’École supérieure d’électricité - Ancien élève de l’Institut Von Karman - Conseiller scientifique de l’Association française des constructeurs de pompes AFCP
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le domaine d’application des pompes s’étend à tous les secteurs de l’activité humaine. Elles sont présentes dans notre environnement domestique avec les circulateurs de chauffage central, les pompes des machines à laver, les pompes à fuel, etc. Dans ce domaine, elles doivent être particulièrement silencieuses et exemptes de vibrations, sans quoi notre qualité de vie serait altérée.
Le législateur a établi des normes qui limitent les niveaux de bruit à des valeurs acceptables ; cependant les constructeurs de matériels domestiques vont souvent au-delà de ces normes, et font du silence leur premier argument de vente, tant le besoin de silence est grand.
Dans le domaine industriel, on rencontre des préoccupations semblables, mais auxquelles s’ajoutent d’autres besoins. Les fluctuations de pression génèrent des vibrations qui peuvent en effet être la cause d’une détérioration progressive des supports de tuyauterie ou des joints qui relient entre eux les différents tronçons de la conduite. Plus généralement, les fluctuations de pression sont responsables de phénomènes de fatigue qui peuvent être dangereux à terme.
La nécessité de discrétion acoustique s’est étendue maintenant au domaine militaire, par suite du remarquable développement des moyens d’écoute. Aujourd’hui, il n’est pas exagéré de dire que le besoin d’un fonctionnement silencieux s’est élargi à presque tous les domaines d’application des pompes.
Enfin, il convient de préciser que ce qui suit ne concerne que les pompes rotodynamiques (pompes centrifuges, axiales et hélicocentrifuges). Les mécanismes de génération du bruit des pompes volumétriques, en particulier des pompes alternatives où le débit est discontinu, sont d’une nature totalement différente.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mécanique > Machines hydrauliques, aérodynamiques et thermiques > Machines hydrauliques : pompes et hélices > Bruit des pompes > Bruit généré par la cavitation
Cet article fait partie de l’offre
Bruit et vibrations
(97 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Bruit généré par la cavitation
6.1 Nature et origine du phénomène
La cavitation est due au passage en phase vapeur d’une fraction plus ou moins grande du liquide pompé. Elle apparaît initialement dans des zones précises et limitées où la pression est basse et atteint la tension de vapeur. Le bruit de cavitation n’existe donc que dans des conditions particulières, lorsque la pression P0 à l’aspiration de la pompe descend au-dessous d’un certain seuil.
Le bruit de cavitation est dû à l’implosion de bulles ou de poches de vapeur, soit sur elles-mêmes, soit sur une paroi. L’implosion des bulles se fait lorsqu’elles transitent d’une zone de faible pression vers une zone de forte pression. La valeur locale du gradient de pression, à l’endroit où les bulles se referment, conditionne la violence du phénomène et ce qui en découle : le bruit et l’érosion.
En dehors des phénomènes d’implosion, la cavitation intervient sur le bruit, de deux façons secondaires.
-
Lorsque la poche de vapeur grandit et s’étend à la quasi-totalité des aubages, la modification des formes vue par le fluide (qui suit le contour de la poche) transforme le champ de vitesse à la sortie de la roue. Il en résulte une altération de la hauteur théorique (par variation de ) fournie par la pompe et un changement du bruit créé par le défilement des sillages devant le bec de la volute, car la forme des sillages est transformée.
-
Dès que le pourcentage de vapeur atteint un certain seuil, les mécanismes de propagation du bruit sont totalement modifiés. On se reportera à la figure 5 qui montre que pour un pourcentage d’air supérieur à 10–4 en masse, la vitesse du son dans le mélange diphasique tombe pratiquement à zéro. Il en va de même pour le mélange eau vapeur.
Ces 2 influences secondaires de la cavitation sur le bruit, qui ne doivent plus rien aux phénomènes d’implosion, n’interviennent que dans la phase terminale de cavitation où les caractéristiques de la pompe sont affectées. Elles jouent alors un rôle dominant.
...Cet article fait partie de l’offre
Bruit et vibrations
(97 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Bruit généré par la cavitation
BIBLIOGRAPHIE
-
(1) - * - VDI-Richtlinien-VDI 3733 déc. 92 « Gerausche bei rohrleitung ».
-
(2) - Documentation SULZER - Élements d’hydraulique pour l’étude d’installations de pompage - .
-
(3) - * - Publications du CETIM « Guide acoustique des installations de pompage », juin 1997.
-
(4) - BERT (P.F.), COMBES (J.F.), KUENY (J.L.) - Unsteady flow calculation in a centrifugal impeller using a finite element methode, - 1996.
-
(5) - CONESCO - Study of fluidborne noise and the development of fluid acoustic filter test specifications, - report F121, may 1964.
-
(6) - EUROPUMP - Guide de prévision du bruit aérien émis par les pompes rotodynamiques - .
-
...
ANNEXES
1 Codes de calcul des circuits
Les fluctuations de pression émises par une pompe (ou une vanne) doivent être analysées de façon à définir le risque qu’elles représentent pour le circuit (contraintes, niveaux vibratoires, fréquences propres, forces exercées sur la structure).
Par ailleurs, nous avons vu (§ 5.2.2) qu’il convenait, pour effectuer un calcul réaliste du bruit émis par une pompe, de prendre en compte les conditions imposées par le circuit aux limites de celle-ci. Nous citerons trois codes permettant d’évaluer les caractéristiques d’un circuit.
-
CIRCUS : dans le domaine qui nous concerne, il permet :
-
l’analyse du fonctionnement ;
-
le calcul de l’écoulement permanent ;
-
l’estimation et la modélisation, à partir de données expérimentales, des sources acoustiques (pompes, vannes, etc.) ;
-
le calcul de la réponse acoustique et mécanique du réseau de tuyauteries ;
-
la vérification des critères de vitesse vibratoire ;
-
le calcul des contraintes mécaniques.
Nota :Pour d’autres possibilités offertes par CIRCUS, se reporter à .
-
-
CETIM-NORMAPULS : il détermine les niveaux de pulsation de pression hydraulique dans les réseaux, à partir de la caractérisation des pompes par 2 coefficients...
Cet article fait partie de l’offre
Bruit et vibrations
(97 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive