Présentation
EnglishRÉSUMÉ
Les piles à combustible trouvent aujourd’hui des applications dans un grand nombre de domaines. Pour cela, l’objet unitaire "pile à combustible" doit tout d’abord être intégré dans un système, lequel permet d’alimenter la pile à combustible en carburant et comburant, de mettre en forme l’énergie électrique produite, de gérer la chaleur au sein et autour de la pile à combustible et de s’assurer des conditions opératoires de l’ensemble via un dispositif de contrôle/commande.
Cet article présentera tout d’abord les principales caractéristiques d’un tel système de pile à combustible, avant de se focaliser sur les applications des piles à combustible dans le domaine de la production stationnaire d’énergie et dans celui des mobilités terrestres (véhicules personnels, bus, camions, trains).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Daniel HISSEL : Professeur, université de Franche-Comté, Institut universitaire de France (IUF), FEMTO-ST, CNRS, Directeur-adjoint Fédération nationale hydrogène du CNRS
-
Michel CASSIR : Professeur émérite, Chimie ParisTech, université PSL, Institut de recherche de chimie Paris (IRCP), France
-
Claude LAMY : Professeur émérite, Institut Charles Gerhardt (ICGM), CNRS, université de Montpellier, membre de France Hydrogène, France
-
Gilles TAILLADES : Professeur, Directeur de la mention Énergie, Institut Charles Gerhardt (ICGM), CNRS, université de Montpellier, France
INTRODUCTION
Depuis leur invention en 1839, les perspectives d’un développement commercial des piles à combustible n’ont jamais été aussi bonnes, par suite des efforts de la recherche, de choix stratégiques de grands groupes industriels, de constructeurs automobiles et en réponse à un contexte environnemental, sociétal et politique, en forte évolution.
L’objet technologique qu’est la pile à combustible ne peut pas fonctionner seul. Il doit être impérativement associé à d’autres objets technologiques, souvent qualifiés d’« auxiliaires », mais néanmoins totalement indispensables à son fonctionnement. Cet article, en complément aux trois articles auquel il est associé, doit permettre de donner au technicien et à l’ingénieur les bases nécessaires à la conception d’un tel « système » pile à combustible, associant le cœur de pile avec ses auxiliaires de fonctionnement, dans l’objectif de permettre d’optimiser les performances statiques et dynamiques d’un tel système, tout en préservant sa durabilité et en minimisant ses coûts d’investissement et de fonctionnement.
Par ailleurs, une fois le système pile à combustible ainsi constitué, cet article décrira également les applications aujourd’hui existantes dans le domaine des systèmes stationnaires de production d’énergie, mais aussi dans celui de la mobilité terrestre, ou plutôt des mobilités terrestres, tant la conception de celles-ci peut s’avérer différente, selon le cahier des charges auquel ces systèmes hydrogène doivent répondre.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Conversion de l'énergie électrique > Accumulateurs d'énergie > Systèmes de piles à combustible - Applications stationnaires et mobilités terrestres > Gestion électrique
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Gestion électrique
Quel que soit le type de pile à combustible considéré, la production d’énergie électrique reste souvent le premier objectif assigné à celle-ci. De fait, le rendement de conversion est souvent exprimé (à tort, car il omet la possible – voire probable – valorisation de la chaleur dégagée par le système) comme étant le rapport entre la production électrique et la consommation d’hydrogène en entrée. La quantité et la qualité de cette production d’énergie électrique sont donc deux facteurs clefs permettant d’évaluer l’intérêt de l’utilisation d’une pile à combustible dans un contexte applicatif donné.
La mise en forme de l’énergie électrique produite par le stack se fait grâce à un convertisseur statique, qui est en fait une interface d’électronique de puissance entre le stack et l’utilisation finale de l’énergie électrique. Dans le cas d’une application embarquée, il s’agira souvent d’une chaîne de traction ou de propulsion électrique, ou bien d’une source auxiliaire de puissance électrique (APU : Auxiliary Power Unit) permettant d’alimenter non pas la traction mais d’autres fonctions à bord du véhicule (par exemple un groupe froid électrique à bord d’une semi-remorque frigorifique (voir figure 27 – § 8.3 Camions), ou un circuit électrique de secours à bord d’un avion).
La typologie et la nature de ce convertisseur statique diffèrent selon les applications envisagées. Il peut s’agir d’un convertisseur DC-DC (hacheur) si l’on considère l’alimentation par la pile à combustible d’un microréseau continu (stationnaire ou embarqué). Il peut aussi s’agir d’un convertisseur DC-AC (onduleur) si on cherche à alimenter un moteur électrique ou à fournir un courant alternatif dans le cas d’un groupe électrogène à hydrogène.
Il existe néanmoins deux impératifs associés...
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Gestion électrique
BIBLIOGRAPHIE
-
(1) - BARBIR (F.) - PEM Fuel Cells: Theory and practices. - Elsevier Academic Press, San Diego, Califiornia (2005).
-
(2) - KALAMARAS (C.M.), EFSTATHIOU (A.M.) - Hydrogen Production Technologies : Current State and Future Developments. - Conference Papers in Science, vol. 2013, 690627 (2013).
-
(3) - VOLDSUND (M.), JORDAL (K.), -ANANTHARAMAN (R.) - Hydrogen Energy. - International Journal of Hydrogen, 41, pp. 4969-4992 (2016).
-
(4) - Ordonnance n° 2021-167 du 17 février 2021 - relative à l’hydrogène.
-
(5) - - https://www.linde-engineering.com
-
(6) - WANG (H.), GAILLARD (H.), HISSEL (D.) - A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles. - Renewable...
DANS NOS BASES DOCUMENTAIRES
-
Systèmes de piles à combustible – Applications fluviale, maritime, aérospatiale et portable.
-
GENEPAC : pile à combustible PEMFC issue du partenariat PSA Peugeot Citroën (Stellantis) et CEA.
-
Principe des piles à combustible. Piles à membranes basse température.
-
Filières de piles à combustible. Piles alcalines et à haute température.
-
Piles à combustible PEMFC et SOFC – Description et gestion du système.
-
Piles à combustible PEMFC et SOFC – Transferts de chaleur et de masse.
-
...
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive