Présentation

Article

1 - SYSTÈME DE PILE À COMBUSTIBLE

2 - GESTION DU COMBUSTIBLE

3 - GESTION DU COMBURANT

4 - GESTION THERMIQUE

5 - GESTION ÉLECTRIQUE

6 - CONTRÔLE/SUPERVISION

7 - APPLICATIONS STATIONNAIRES

8 - MOBILITÉS TERRESTRES

9 - CONCLUSIONS ET PERSPECTIVES

10 - GLOSSAIRE

Article de référence | Réf : D3343 v1

Gestion du comburant
Systèmes de piles à combustible - Applications stationnaires et mobilités terrestres

Auteur(s) : Daniel HISSEL, Michel CASSIR, Claude LAMY, Gilles TAILLADES

Date de publication : 10 janv. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les piles à combustible trouvent aujourd’hui des applications dans un grand nombre de domaines. Pour cela, l’objet unitaire "pile à combustible" doit tout d’abord être intégré dans un système, lequel permet d’alimenter la pile à combustible en carburant et comburant, de mettre en forme l’énergie électrique produite, de gérer la chaleur au sein et autour de la pile à combustible et de s’assurer des conditions opératoires de l’ensemble via un dispositif de contrôle/commande.

Cet article présentera tout d’abord les principales caractéristiques d’un tel système de pile à combustible, avant de se focaliser sur les applications des piles à combustible dans le domaine de la production stationnaire d’énergie et dans celui des mobilités terrestres (véhicules personnels, bus, camions, trains).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Daniel HISSEL : Professeur, université de Franche-Comté, Institut universitaire de France (IUF), FEMTO-ST, CNRS, Directeur-adjoint Fédération nationale hydrogène du CNRS

  • Michel CASSIR : Professeur émérite, Chimie ParisTech, université PSL, Institut de recherche de chimie Paris (IRCP), France

  • Claude LAMY : Professeur émérite, Institut Charles Gerhardt (ICGM), CNRS, université de Montpellier, membre de France Hydrogène, France

  • Gilles TAILLADES : Professeur, Directeur de la mention Énergie, Institut Charles Gerhardt (ICGM), CNRS, université de Montpellier, France

INTRODUCTION

Depuis leur invention en 1839, les perspectives d’un développement commercial des piles à combustible n’ont jamais été aussi bonnes, par suite des efforts de la recherche, de choix stratégiques de grands groupes industriels, de constructeurs automobiles et en réponse à un contexte environnemental, sociétal et politique, en forte évolution.

L’objet technologique qu’est la pile à combustible ne peut pas fonctionner seul. Il doit être impérativement associé à d’autres objets technologiques, souvent qualifiés d’« auxiliaires », mais néanmoins totalement indispensables à son fonctionnement. Cet article, en complément aux trois articles auquel il est associé, doit permettre de donner au technicien et à l’ingénieur les bases nécessaires à la conception d’un tel « système » pile à combustible, associant le cœur de pile avec ses auxiliaires de fonctionnement, dans l’objectif de permettre d’optimiser les performances statiques et dynamiques d’un tel système, tout en préservant sa durabilité et en minimisant ses coûts d’investissement et de fonctionnement.

Par ailleurs, une fois le système pile à combustible ainsi constitué, cet article décrira également les applications aujourd’hui existantes dans le domaine des systèmes stationnaires de production d’énergie, mais aussi dans celui de la mobilité terrestre, ou plutôt des mobilités terrestres, tant la conception de celles-ci peut s’avérer différente, selon le cahier des charges auquel ces systèmes hydrogène doivent répondre.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3343


Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

3. Gestion du comburant

Le comburant dans la pile à combustible est l’oxygène contenu dans l’air ou, plus rarement, l’oxygène pur. Il est habituellement alimenté en surstœchiométrie (sous-consommation) pour éviter une trop faible alimentation (voire une sous-alimentation) des cellules placées en position terminale par rapport à l’arrivée de l’air. Si l’on considère une alimentation à partir d’air ambiant, il est important de filtrer cette arrivée d’air, pour éviter d’injecter des impuretés au cœur même de la pile à combustible, lesquelles conduiraient irrémédiablement à une réduction des performances de celle-ci.

Par ailleurs, pour des piles à combustible de faible et moyenne puissance, l’air peut aussi jouer le rôle de gaz de refroidissement. Il intervient donc, dans ce cas, dans le système de régulation thermique de la pile (figure 1).

L’air appauvri en oxygène, mais aussi réchauffé, voire humidifié dans le stack, peut être valorisé. À titre d’illustration, il peut être envoyé vers un échangeur à membrane à l’entrée du stack pour récupérer l’humidité présente dans le gaz de sortie et l’utiliser pour l’humidification des gaz alimentant la pile à combustible, en entrée. Bien entendu, d’autres types de valorisation de l’air de sortie de la pile à hydrogène, impliquant la température, la pression, l’humidité ou le débit, peuvent également être envisagés selon les applications et les types de pile considérés. Ces valorisations peuvent contribuer à l’augmentation du rendement global du système.

Un étage de compression est nécessaire pour les piles fonctionnant sous pression. Cette compression peut être assurée par un turbocompresseur alimenté par la décompression des gaz en sortie et un brûleur, et/ou par un compresseur électrique. Cette compression représente une partie importante du bilan énergétique du système et vient diminuer le rendement du système complet (classiquement, des valeurs de l’ordre de 10 % de la puissance électrique produite par la pile à combustible sont ainsi utilisées pour l’alimentation électrique du groupe motocompresseur).

Le circuit du comburant est également...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Gestion du comburant
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BARBIR (F.) -   PEM Fuel Cells: Theory and practices.  -  Elsevier Academic Press, San Diego, Califiornia (2005).

  • (2) - KALAMARAS (C.M.), EFSTATHIOU (A.M.) -   Hydrogen Production Technologies : Current State and Future Developments.  -  Conference Papers in Science, vol. 2013, 690627 (2013).

  • (3) - VOLDSUND (M.), JORDAL (K.), -ANANTHARAMAN (R.) -   Hydrogen Energy.  -  International Journal of Hydrogen, 41, pp. 4969-4992 (2016).

  • (4) -   Ordonnance n° 2021-167 du 17 février 2021  -  relative à l’hydrogène.

  • (5) -    -  https://www.linde-engineering.com

  • (6) - WANG (H.), GAILLARD (H.), HISSEL (D.) -   A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles.  -  Renewable...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS