Présentation

Article

1 - ÉBULLITION CONVECTIVE

2 - ÉBULLITION CONVECTIVE POUR DES TUBES VERTICAUX

3 - ÉBULLITION CONVECTIVE POUR DES TUBES HORIZONTAUX

4 - ÉBULLITION CONVECTIVE DES MÉLANGES

5 - ÉBULLITION CONVECTIVE EN MINI- ET MICROCANAUX

Article de référence | Réf : BE8236 v2

Ébullition convective
Transferts en changement de phase - Ébullition convective

Auteur(s) : Rémi REVELLIN, Monique LALLEMAND

Date de publication : 10 nov. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Pour assurer le refroidissement d’ambiances, de liquides, de systèmes, le recours à l’ébullition convective conduit à des transferts thermiques plus efficaces qu’en ébullition libre. Ce régime d’ébullition possède de nombreuses variantes. Cependant, deux mécanismes interdépendants prédominent, celui de la convection forcée et celui d’un processus d’ébullition nucléée contrôlé par la différence de températures entre la paroi et le fluide, les propriétés du liquide, la mouillabilité de la paroi. Par ailleurs, la géométrie des systèmes (ébullition intratubulaire, extratubulaire), leur taille (ébullition intratubulaire en micro, mini ou macrocanaux) et leur orientation par rapport à l’horizontale modifient eux aussi notablement les transferts thermiques en ébullition.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Rémi REVELLIN : Ingénieur INSA Lyon, Docteur-ès-sciences EPFL (Suisse) - Professeur des universités à l’Institut national des sciences appliquées de Lyon

  • Monique LALLEMAND : Ingénieur INSA Lyon, Docteur-ès-Sciences - Ex-Professeur des universités à l’Institut national des sciences appliquées de Lyon

INTRODUCTION

L’ébullition convective est largement utilisée pour assurer le refroidissement d’ambiances, de liquides, de systèmes, grâce à des transferts thermiques plus efficaces qu’en ébullition libre. Dans le domaine industriel, la conception de réacteurs nucléaires refroidis par eau, de systèmes de récupération d’énergie basés sur le cycle de Rankine Organique, de machines frigorifiques ou pompes à chaleur, de bouilleurs dans l’industrie pétrochimique et de nombreuses installations du génie des procédés est basée sur les connaissances des mécanismes contrôlant l’ébullition convective. En ébullition convective, les échanges thermiques dépendent d’une part, du phénomène de convection forcée, d’autre part, du processus d’ébullition nucléée à partir d’une paroi suffisamment chauffée pour qu’il y ait génération de vapeur. Ces deux mécanismes sont étroitement dépendants l’un de l’autre du fait de la coexistence des deux phases. En plus des forces visqueuses, d’inertie, de pression caractérisant les écoulements monophasiques, les écoulements diphasiques sont soumis aux forces de tension interfaciales et à l’échange de quantité de mouvement entre les deux phases. Les transferts thermiques en ébullition nucléée sont principalement contrôlés par la différence de températures entre la paroi et le fluide, les propriétés du liquide, la mouillabilité de la paroi. Pour l’ébullition convective, les vitesses de chaque phase et leur distribution jouent un rôle majeur, ce qui nécessite la connaissance des configurations d’écoulement en fonction de la position du système, qui le plus souvent est horizontale ou verticale. Les mécanismes d’ébullition associés conduisent à différents régimes d’ébullition qui doivent être étudiés séparément. Par ailleurs, la géométrie des systèmes (ébullition intratubulaire, extratubulaire) et leur orientation modifient notablement les transferts thermiques en ébullition. Les mélanges de fluides revêtent une grande importance dans de nombreuses applications chimiques, pétrochimiques et dans les procédés industriels. Du fait d’un comportement différent des corps purs qui les composent, ils doivent faire l’objet de développements spécifiques en ébullition convective. Enfin, depuis quelques décennies sont apparues des méthodes de refroidissement diphasiques plus efficaces telles que les écoulements en microcanaux.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-be8236


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Ébullition convective

1.1 Écoulements avec changement de phase : grandeurs spécifiques

Lorsqu’un liquide s’écoule en convection forcée au voisinage d’une paroi chauffée et que les conditions imposées permettent d’obtenir un changement de phase liquide/vapeur, il s’agit d’ébullition convective. La répartition des phases diffère notablement de par le degré de fractionnement des deux phases. Différentes grandeurs permettent de préciser les proportions de chaque phase ainsi que les caractéristiques de l’écoulement. Elles sont présentées dans ce paragraphe ainsi que les relations qui les relient en considérant un écoulement co-courant des deux phases.

  • Fraction de vide ou taux de vide ε

    Pour un tube de section A, sur laquelle la vapeur occupe une section Av et le liquide une section A l , la fraction de vide est donnée par :

    ε= A v A  et ( 1ε)= A l A

    A= A l + A v .

  • Titre de la vapeur x

    Il est défini à partir d’un rapport de débits massiques des phases :

    x= M ˙ v M ˙ ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Ébullition convective
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - APRIN (L.) -   Étude expérimentale de l’ébullition d’hydrocarbures sur un faisceau de tubes horizontaux. Influence de la nature du fluide et de l’état de surface.  -  Thèse de Doctorat, Aix-Marseille I, nov. 2003.

  • (2) - BAKER (O.) -   Simultaneous flow of oil and gas.  -  Oil gas J., 53, p. 185 (1954).

  • (3) - BAROCZY (C.J.) -   A systematic correlation for two-phase pressure drop.  -  Chem. Eng. Prog. Symp. Ser., 62, p. 232-249 (1966).

  • (4) - BERGLES (A.E.), ROHSENOW (W.M.) -   The determination of forced-convection surface-boiling heat transfer.  -  J. Heat Transfer, 86, p. 365-372 (1964).

  • (5) - BOWRING (R.W.) -   A simple but accurate round tube uniform heat flux dry-out correlation over the pressure range 0,717 MN/m2.  -  Br Report AEEW-R789, Winfrith, UK (1972).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS