Présentation
En anglaisAuteur(s)
-
Gérard ANTONINI : Professeur des universités - Université de technologie de Compiègne (UTC)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
En partant d'une couche de solides divisés au repos, et sous l'effet d'un courant ascendant de gaz, un lit fixe de particules s'expanse et atteint un état d'équilibre dynamique, dit fluidisé dense, dans lequel les particules sont mises en suspension au-dessus du support poreux traversé par le gaz.
Ces dispersions gaz-solide fluidisées ont un comportement hydrodynamique global qui les rapproche de celui des liquides. Par exemple, un lit fluidisé occupe un volume présentant une surface libre horizontale, même lorsqu'on incline le lit. En système ouvert, le niveau d'un lit peut être maintenu constant par une alimentation en continu en solides divisés et un soutirage, via un orifice pratiqué dans une paroi latérale en fond du volume fluidisé, ou par surverse. Enfin, on peut y immerger des surfaces d'échange.
L'agitation particulaire et le brassage hydrodynamique, par des trains de bulles gazeuses, font, de ces couches fluidisées, des volumes dans lesquels les solides divisés sont vigoureusement mélangés. Ils peuvent y échanger de la chaleur et de la matière avec une grande efficacité, par contact direct, à grande surface spécifique, avec le gaz ou avec un échangeur immergé. La couche fluidisée constitue alors un volume ouvert, pratiquement isotherme, du fait de la forte capacité thermique massique des solides par rapport à celle du gaz, ainsi que par leur renouvellement au contact des surfaces d'échange.
L'état fluidisé apparaît, en fait, comme une transition entre l'état fixe et le lit entraîné, dans laquelle le solide est mis en suspension diluée dans un gaz porteur ascendant à plus grande vitesse, transporté, puis récupéré, en partie haute, avant d'être retourné dans le lit, formant dès lors un lit fluidisé circulant.
Dans cette première partie du document, on présente les principales caractéristiques des solides divisés, leur classification, et les différents régimes de fluidisation gaz-solide accessibles. On fournit un ensemble de données et de corrélations utilisables concernant l'hydrodynamique de la fluidisation. On présente également les différents dispositifs auxiliaires nécessaires à leur bon fonctionnement. Les performances des lits fluidisés en tant que mélangeurs gaz-solide et solide-solide sont abordées, ainsi que les problèmes d'érosion-corrosion rencontrés dans l'utilisation de cette technologie.
On décrit ensuite les différentes applications possibles des lits fluidisés : elles sont nombreuses et concernent, par exemple, le chauffage/refroidissement de gaz ou de solides divisés, à contact direct ou via des échangeurs immergés, la production ou la récupération d'énergie thermique, la calcination de minerai, le séchage/désorption, la gazéification de combustibles solides.
Une deuxième partie [BE 8 256] sera consacrée aux processus de transferts de masse et de chaleur en lit fluidisé, avec applications aux échangeurs ouverts mono ou multiétagés, aux sécheurs, aux chaudières à lits fluidisés.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Le lit fluidisé en tant que mélangeur
En régime de fluidisation hétérogène, la présence de trains de bulles gazeuses ascendantes favorise le mélange interne des solides divisés constituant le lit.
Ces bulles naissent au niveau du distributeur d'air et entraînent des particules dans leur sillage au cours de leur mouvement ascendant, permettant d'amener à la surface du lit des particules, initialement proches du distributeur (figure 11).
Il en résulte une dispersion importante du solide divisé dans la direction axiale. L'ascension des bulles n'est cependant pas strictement verticale, entraînant une dispersion radiale plus ou moins rapide.
La coalescence et l'éclatement des bulles en surface favorisent également la dispersion radiale des particules du lit.
À vitesse croissante, le gaz pourra être considéré, en première approximation, comme en écoulement piston, et ce, d'autant plus que l'on se rapproche d'un régime de fluidisation rapide. Cependant, il subsiste une certaine dispersion du gaz au sein du lit dans la direction axiale et, en moindre mesure, dans la direction radiale. En régime de fluidisation turbulente ou rapide, Li et Wu ont proposé d'exprimer le coefficient de dispersion axiale du gaz D gax (en m2 · s−1) par la corrélation :
Ainsi, en régime de fluidisation hétérogène, les particules constituant un lit fluidisé sont-elles soumises à une recirculation interne rapide au sein de la couche fluidisée. En lit circulant, le solide divisé est lui-même recirculé par la jambe externe.
Cette recirculation interne de solide est d'autant plus importante que l'excès de vitesse de gaz par rapport à la vitesse minimale de fluidisation est grand.
Les flux massiques de recirculation particulaire interne, par unité de surface de section droite d'un lit dense, varient couramment de 102 à 103 kg/m2 · s−1.
Ce taux de recirculation moyen des particules du lit peut être estimé par la corrélation :
avec d p en mètres.
Cette recirculation a une forte influence sur l'homogénéisation des températures et des concentrations au sein du lit.
Si l'on introduit un solide divisé...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Le lit fluidisé en tant que mélangeur
BIBLIOGRAPHIE
-
(1) - GELDART (D.) - * - Powder Techn., 7, p. 285 (1973).
-
(2) - BRAUER (H.), MEWES (D.) - * - Chem. Ing. Tech., 44, p. 865 (1972).
-
(3) - HEIDER (A.), LEVENSPIEL (O.) - * - Powder Techno., 58, p. 63 (1989).
-
(4) - GOOSENS (W.R.A.) - * - Powder Techno., 98, p. 48 (1998).
-
(5) - ERGUN (S.) - * - Chem. Eng. Prog., 48, p. 89 (1952).
-
(6) - WEN (C.Y.), YU (Y.H.) - * - AIChE J., 12, p. 610 (1966).
-
(7) - BROADHURST (T.E.), BECKER (H.A.) - * - AIChE J., 21, (no 2), p. 238 (1975).
- ...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive