Présentation
En anglaisRÉSUMÉ
L’air humide est un mélange de gaz contenant de la vapeur d’eau. Les propriétés thermodynamiques de ce
mélange sont fortement influencées par la présence de la vapeur d’eau, qui peut également se condenser sous
certaines conditions de température et de pression. La connaissance d’un paramètre descriptif de l’humidité est
nécessaire pour caractériser l’état thermodynamique de l’air humide ; ce paramètre peut être la température de
rosée, l’humidité relative, le rapport de mélange, la température humide, l’humidité absolue ou encore l’humidité
spécifique.
Cet article présente les définitions et relations entre les différentes grandeurs de l’air humide, les formules de calcul
des grandeurs thermodynamiques (masse volumique, volume massique, enthalpie, etc.) et les principes de mesure
des hygromètres les plus courants.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Moist air is a mixture of gases containing water vapor. The thermodynamic properties of this mixture are strongly
influenced by the presence of water vapor, which can also condense under certain temperature and pressure
conditions. Knowledge of a descriptive parameter of humidity is necessary to characterize the thermodynamic state
of the moist air ; this quantity may be dew-point temperature, relative humidity, mixing ratio, wet-bulb temperature,
absolute humidity.
This paper presents the definitions and relationships between the quantities of moist air, the formulas for calculating
the thermodynamic quantities (density, mass volume, enthalpy, etc.) and the measurement principles of the usual hygrometers.
Auteur(s)
-
Bertrand BLANQUART : Anciens responsables du laboratoire d’hygrométrie du Centre technique des industries aérauliques et thermiques (CETIAT)
INTRODUCTION
L’air qui nous entoure est de l’air humide, contenant de la vapeur d’eau (eau sous forme gazeuse). Les propriétés thermodynamiques de ce mélange de gaz sont fortement influencées par la présence de la vapeur d’eau, qui peut également se condenser sous forme d’eau liquide ou de givre dans certaines conditions de température et de pression. Il est utile de connaître l’état thermodynamique de l’air humide dans de nombreuses applications : ventilation, climatisation, séchage, procédés de fabrication industriels dans les domaines de la santé, de l’électronique, etc.
Dans le cas d’un fluide pur, l’état thermodynamique est entièrement caractérisé par la connaissance de deux grandeurs, par exemple la température et la pression, ou la pression et le volume, etc. En revanche, dans le cas d’un mélange, la présence de plusieurs constituants impose la connaissance d’une troisième grandeur pour caractériser l’état thermodynamique. Pour l’air humide, cette troisième grandeur peut être l’une des nombreuses grandeurs utilisées couramment pour définir l’« humidité » : rapport de mélange, humidité relative, température de rosée, température humide, etc.
Lorsque l’on connaît la température, la pression et l’un quelconque de ces paramètres, il est alors possible de déterminer tous les autres, ainsi que les différentes grandeurs telles que la masse volumique, le volume massique, l’enthalpie, etc.
Les mesures d’humidité de l’air sont obtenues avec un hygromètre. Il en existe différents modèles, mettant en œuvre des principes physiques différents. Comme pour toute mesure, l’obtention d’un résultat correct dépend avant tout du choix d’un capteur adapté, ensuite de son utilisation appropriée et enfin de l’analyse du résultat obtenu.
MOTS-CLÉS
KEYWORDS
humidity | hygrometer
VERSIONS
- Version archivée 1 de avr. 2007 par Bernard CRÉTINON, Bertrand BLANQUART
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Diagramme de l’air humide
Toutes les grandeurs relatives à un état donné de l’air humide peuvent être représentées sur un diagramme unique appelé « diagramme de l’air humide ».
Ce diagramme est construit par rapport à deux axes principaux. On distingue principalement deux types de diagrammes, dont les représentations sont sensiblement équivalentes :
-
le diagramme de Mollier à axes obliques, qui donne le rapport de mélange en fonction de l’enthalpie massique et permet de représenter les autres caractéristiques de l’air humide (température de rosée, température humide, température, etc.) ;
-
le diagramme de Carrier ; c’est le plus couramment utilisé. Il se présente de la façon suivante : en abscisse l’axe des différentes températures mesurées dans le domaine de l’air humide (température de rosée, température humide, température), et en ordonnée l’axe du rapport de mélange.
On peut placer dans le diagramme un réseau de courbes d’humidité relative. La courbe à 100 % HR est la courbe de saturation, limitant le domaine de définition du diagramme. On peut également placer un réseau de droites de température humide et d’enthalpie constantes, limitées pour les hautes humidités relatives par la courbe de saturation.
Les diagrammes de l’air humide présentés dans les paragraphes suivants donnent quelques exemples d’application pour comprendre l’utilisation de ce type de diagramme.
La plupart des diagrammes de l’air humide, qui se présentent apparemment comme des diagrammes de Carrier (θ, r ) sont assez fondamentalement différents. Ils sont construits en établissant, pour les isenthalpes, un réseau de droites parallèles, ce qui rat-tache en fait ces diagrammes au diagramme de Mollier. Le réseau d’isothermes n’est alors qu’apparemment constitué de droites parallèles. En réalité, comme on peut le vérifier sur ces types de représentation, les isothermes divergent.
Les principaux diagrammes construits selon ce principe sont :
-
diagramme de Véron et Casari ;
-
diagramme du COSTIC (Comité scientifique et technique des industries du chauffage et de la climatisation) ;
-
diagramme de l’ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers).
Les...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Diagramme de l’air humide
BIBLIOGRAPHIE
-
(1) - HARRISON (L.P.) - Fundamental concepts and definitions relating to humidity. - Humidity and Moisture, 3, p. 3-69 (1965).
-
(2) - HARRISON (L.P.) - Some fundamental considerations regarding psychrometry. - Humidity and Moisture, 3, p. 71-103 (1965).
-
(3) - WEXLER (A.) - Vapor pressure formulation for water in range 0 to 100 °C. - Journal of Research of the National Bureau of Standards, 80A, n° 5 et 6, p. 775-785 (1976).
-
(4) - WEXLER (A.) - Vapor pressure formulation for ice. - Journal of Research of the National Bureau of Standards, 81A, n° 1, p. 5-20 (1977).
-
(5) - SONNTAG (D.) - Vapor pressure formulation based on the ITS-90 and psychrometer formulae – Important new values of the physical constants of 1986. - Z. Meteorologie, 70, p. 5-340-344 (1990).
-
(6)...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Mesure de l’humidité de l’air – Paramètres hygrométriques - NF X 15-110 - 07-94
-
Thermal Environmental Conditions for Human Occupancy - ASHRAE Std 55 - 2004
1.1 Fabricants, constructeurs d’hygromètres (liste non exhaustive)
Hygromètres à condensation
EdgeTech (États-Unis) http://www.edgetechinstruments.com
General Eastern (États-Unis) http://www.gemeasurement.com
MBW (Suisse) http://www.mbw.ch
Michell Instruments (Royaume-Uni) http://www.michell.co.uk
Hygromètres à variation d’impédance
Delta Ohm (Italie) http://www.deltaohm.com
E+E (Autriche) http://www.epluse.com
Hanna Instruments (France) http://www.hanna-france.com
Jules Richard Instruments (France) http://www.julesrichard.com
Jumo (France) http://www.jumo.fr
Kimo Instruments (France) http://www.kimo.fr
Oceasoft (France) http://www.oceasoft.fr
Rotronic (France) http://www.rotronic.fr
Sensirion (Suisse) http://www.sensirion.com...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive