Présentation
EnglishRÉSUMÉ
Le transport et le stockage de l’hydrogène gazeux sont envisagés pour faciliter le développement d’infrastructures à grande échelle de ce gaz. Cependant, les alliages métalliques peuvent montrer une chute de ductilité en présence d’hydrogène gazeux, dégradation nommée "fragilisation par l’hydrogène". Cet article présente les spécificités de l’environnement gazeux en hydrogène et les différents moyens de caractériser la fragilisation par l’hydrogène. Les mécanismes de dégradation possibles sont ensuite brièvement rappelés. Finalement, les propriétés mécaniques des alliages métalliques utilisés pour le transport et le stockage de l’hydrogène sous pression sont décrites.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Laurent BRIOTTET : Expert international fragilisation par l’hydrogène gazeux - CEA / LITEN, DTCH, Grenoble, France
INTRODUCTION
Les impératifs environnementaux imposent de développer une économie fondée sur l’utilisation d’énergies décarbonées. Parmi les solutions étudiées, le recours à l’hydrogène produit à partir d’énergie « verte », en tant que vecteur d’énergie ou pour le stockage de l’énergie, est une voie en forte croissance dans le monde. À grande échelle, son transport et son stockage sous forme gazeuse font partie des options les plus économiques.
Cependant, il est connu que les matériaux métalliques peuvent être rendus « fragiles » en présence de ce gaz, cet effet pouvant se manifester de différentes façons en fonction de l’environnement, du matériau et de la sollicitation mécanique. À titre d’exemple, en température (vers 300 °C-500 °C) et sous pression d’hydrogène, la formation de bulles de méthane sous hautes pressions entraîne un endommagement connu sous le nom de HTHA (High Temperature Hydrogen Attack) . D’autre part, à température ambiante en milieu aqueux contenant du H2S, l’hydrogène pénètre dans le métal et se recombine pour former des bulles d’hydrogène (« blisters ») à l’origine des baisses de propriétés mécaniques du composant. Ce phénomène est appelé « HIC » (Hydrogen Induced Cracking) . Les exemples précédents sont associés à des conditions rencontrées principalement dans le monde pétrolier. Dans cet article, nous traiterons spécifiquement de l’endommagement observé en présence d’hydrogène gazeux (typiquement de la pression atmosphérique à 1 000 bar), autour de la température ambiante, conditions associées à l’utilisation de l’hydrogène pour le développement des énergies décarbonées. On parle alors de « fragilisation par l’hydrogène » (FPH) qui se caractérise généralement par une chute de ductilité, une baisse de ténacité ou une accélération de la vitesse de propagation des fissures de fatigue. Même sous ces conditions restreintes, différents mécanismes de fragilisation peuvent être activés.
Le dimensionnement mécanique d’une infrastructure hydrogène de grande ampleur, impliquant réseaux de transport et de distribution mais aussi stockage de grandes quantités de gaz, nécessite une quantification précise des baisses de propriétés mécaniques ainsi qu’une meilleure connaissance des mécanismes de dégradation mis en jeu. En effet, s’il existe depuis de nombreuses années plusieurs milliers de km de canalisations pour le transport de H2 aux États-Unis et dans le nord de l’Europe (BeNeLux et France), ces réseaux ont été développés pour des applications industrielles précises et pour des quantités de gaz relativement faibles, avec des marges de sécurité importantes et des intervalles de contrôles spécifiques. Le développement d’infrastructures hydrogène sûres, pour un coût raisonnable, soulève les enjeux principaux suivants en termes de matériaux : 1) compatibilité des installations existantes pour le gaz naturel à l’utilisation d’hydrogène ou de mélange de gaz contenant de l’hydrogène, 2) choix des matériaux pour de nouvelles infrastructures dédiées, 3) établissement de règles de dimensionnement mieux adaptées aux composants en présence d’hydrogène, permettant de réduire les coefficients de sécurité sans risque.
Dans ce contexte, l’objet de cet article est de présenter comment aborder la caractérisation du comportement mécanique des alliages métalliques en présence d’hydrogène gazeux, l’effet des paramètres principaux et les tendances générales entre différentes classes de matériaux.
MOTS-CLÉS
fragilisation par l’hydrogène alliages métalliques environnement gazeux comportement mécanique
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Corrosion Vieillissement > Corrosion et vieillissement : phénomènes et mécanismes > Comportement mécanique des alliages métalliques pour le stockage et le transport de l’hydrogène gazeux > Rappels de mécanismes de FPH
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Rappels de mécanismes de FPH
La dégradation des propriétés mécaniques des matériaux métalliques en présence d’hydrogène gazeux débute par une phase d’adsorption dissociative : avant de pénétrer dans le métal, la molécule de dihydrogène va s’adsorber puis se dissocier en surface de l’échantillon. Chaque H va ensuite se lier chimiquement aux atomes de métal et diffuser dans le volume.
2.1 Phénomènes de surface (adsorption dissociative)
La figure 6 présente les principales étapes classiquement présentées pour décrire la pénétration de H dans le métal. Dans un premier temps (étape 1 sur la figure 6), une molécule H2 va s’adsorber en surface par des forces de Van der Waals. Cette molécule va pouvoir migrer sur la surface (étape 2) jusqu’à trouver des sites favorisant la dissociation de la molécule et la liaison de chaque H avec un atome de métal de surface (étape 3). Les H adsorbés en surface vont alors soit pénétrer en subsurface puis diffuser dans le volume du matériau (étape 4) soit se recombiner et repartir sous forme gazeuse (étape 5).
C’est au cours de ces étapes élémentaires que la présence d’impuretés ou de couches d’oxydes pourront avoir un rôle bénéfique ou néfaste vis-à-vis de la sensibilité du matériau à la FPH.
Les phénomènes de surface affectant la sensibilité à la FPH dépendent donc de la rugosité, de la présence d’oxydes, de la présence d’impuretés dans le gaz… Cependant, ces différents paramètres ne sont pas toujours bien maîtrisés ou connus, que ce soit au niveau expérimental ou lors du comportement en service du composant. Ces incertitudes peuvent alors entraîner des disparités dans les conclusions obtenues.
HAUT DE PAGE2.2 Solubilité
Dans des conditions idéales (absence d’impuretés ou de couches d’oxydes), la surface du métal est considérée saturée en H. La concentration d’hydrogène en surface du métal est donc directement liée à la solubilité de l’hydrogène...
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Rappels de mécanismes de FPH
BIBLIOGRAPHIE
-
(1) - POORHAYDARI (K.) - A Comprehensive Examination of High-Temperature Hydrogen Attack—A Review of over a Century of Investigations. - Journal of Material Engineering and Performance, vol. 30, no 11 (2021).
-
(2) - FUJISHIRO (T.), HARA (T.) - In Situ Observation of Hydrogen-Induced Cracking Propagation Behavior. - Corrosion, vol. 74, no 10 (2018).
-
(3) - BOOT (T.), RIEMSLAG (T.), REINTON (E.), LIU (P.), WALTERS (C.L.), POPOVICH (V.) - In-Situ Hollow Sample Setup Design for Mechanical Characterisation of Gaseous Hydrogen Embrittlement of Pipeline Steels and Welds. - Metals, vol. 11 (2021).
-
(4) - BARTHELEMY (H.) - Compatibility of metallic materials with hydrogen. Review of the present knowledge. - International Conference on Hydrogen Safety, San Sebastian, Espagne (sept. 2007).
-
(5) - DE MIGUEL (N.), ACOSTA (B.), MORETTO (P.), BRIOTTET (L.), BORTOT (P.), MECOZZI (E.) - Hydrogen enhanced fatigue in full scale metallic vessel tests – Results from the MATHRYCE project. - International Journal of Hydrogen Energy, vol. 42 (2017).
- ...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Bouteilles à gaz transportable – Fragilisation par l’hydrogène des aciers - AFNOR FD E 29-649 - 2004
-
Alternatives rules for construction of high pressure vessels, Boiler and Pressure Vessel Code - ASME Section VIII, Division III - 2019
-
Transportable gas cylinders – Compatibility of cylinder and valve materials with gas contents – Part 4: Tests methods for selecting steels resistant to hydrogen embrittlement - ISO 11114-4 - 2017
-
Corrosion des métaux et alliages – Essais de corrosion sous contrainte – Partie 6 : Préparation et utilisation des éprouvettes préfissurées pour essais sous charge constante ou sous déplacement constant - ISO 7539-6 - 2018
-
Metallic Materials – Unified method of test for the determination of quasistatic fracture toughness - ISO 12135 - 2021
-
Hydrogen piping and pipelines - ASME B31.12 - 2019
-
Standard Test Method for Measurement of Fracture Toughness - ASTM E1820 - 2018
-
...
ANNEXES
Organismes – Fédérations – Associations (liste non exhaustive)
Commission thématique « Corrosion sous contrainte, Fatigue – corrosion et Fragilisation par l’hydrogène » du CEFRACOR :
Laboratoires – Bureaux d’études – Écoles – Centres de recherche (liste non exhaustive)Commissariat à l’énergie atomique et aux énergies alternatives/Laboratoire d’innovation pour les technologies des énergies nouvelles et les nanomatériaux, CEA/LITEN/DTCH/SCPC/LCA : https://liten.cea.fr/cea-tech/liten/Pages/Accueil.aspx, Grenoble, France
ISAE-ENSMA, Institut Pprime, département Physique et mécanique des matériaux : https://www.pprime.fr, Poitiers, France
HAUT DE PAGECet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive