Présentation

Article

1 - CARACTÉRISATION DE LA SENSIBILITÉ À LA FPH SOUS PRESSION D’H2

2 - RAPPELS DE MÉCANISMES DE FPH

3 - COMPORTEMENT MÉCANIQUE DES ALLIAGES MÉTALLIQUES SOUS PRESSION D’H2

4 - CONCLUSION

5 - GLOSSAIRE

6 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : M178 v1

Conclusion
Comportement mécanique des alliages métalliques pour le stockage et le transport de l’hydrogène gazeux

Auteur(s) : Laurent BRIOTTET

Date de publication : 10 juin 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Le transport et le stockage de l’hydrogène gazeux sont envisagés pour faciliter le développement d’infrastructures à grande échelle de ce gaz. Cependant, les alliages métalliques peuvent montrer une chute de ductilité en présence d’hydrogène gazeux, dégradation nommée "fragilisation par l’hydrogène". Cet article présente les spécificités de l’environnement gazeux en hydrogène et les différents moyens de caractériser la fragilisation par l’hydrogène. Les mécanismes de dégradation possibles sont ensuite brièvement rappelés. Finalement, les propriétés mécaniques des alliages métalliques utilisés pour le transport et le stockage de l’hydrogène sous pression sont décrites.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Mechanical behaviour of metallic materials for transport and storage of gaseous hydrogen

The transport and storage of hydrogen gas is envisaged to facilitate the development of dedicated large-scale infrastructure. However, metallic alloys may present a loss of ductility in an environment containing hydrogen gas. This degradation of the mechanical properties is called hydrogen embrittlement. This article first describes the specificities of a hydrogen gas environment and the different means of characterizing hydrogen embrittlement. The possible damage mechanisms are then briefly recalled. Finally, the mechanical properties of metal alloys used for the transport and storage of hydrogen under pressure are described.

Auteur(s)

  • Laurent BRIOTTET : Expert international fragilisation par l’hydrogène gazeux - CEA / LITEN, DTCH, Grenoble, France

INTRODUCTION

Les impératifs environnementaux imposent de développer une économie fondée sur l’utilisation d’énergies décarbonées. Parmi les solutions étudiées, le recours à l’hydrogène produit à partir d’énergie « verte », en tant que vecteur d’énergie ou pour le stockage de l’énergie, est une voie en forte croissance dans le monde. À grande échelle, son transport et son stockage sous forme gazeuse font partie des options les plus économiques.

Cependant, il est connu que les matériaux métalliques peuvent être rendus « fragiles » en présence de ce gaz, cet effet pouvant se manifester de différentes façons en fonction de l’environnement, du matériau et de la sollicitation mécanique. À titre d’exemple, en température (vers 300 °C-500 °C) et sous pression d’hydrogène, la formation de bulles de méthane sous hautes pressions entraîne un endommagement connu sous le nom de HTHA (High Temperature Hydrogen Attack) . D’autre part, à température ambiante en milieu aqueux contenant du H2S, l’hydrogène pénètre dans le métal et se recombine pour former des bulles d’hydrogène (« blisters ») à l’origine des baisses de propriétés mécaniques du composant. Ce phénomène est appelé « HIC » (Hydrogen Induced Cracking) . Les exemples précédents sont associés à des conditions rencontrées principalement dans le monde pétrolier. Dans cet article, nous traiterons spécifiquement de l’endommagement observé en présence d’hydrogène gazeux (typiquement de la pression atmosphérique à 1 000 bar), autour de la température ambiante, conditions associées à l’utilisation de l’hydrogène pour le développement des énergies décarbonées. On parle alors de « fragilisation par l’hydrogène » (FPH) qui se caractérise généralement par une chute de ductilité, une baisse de ténacité ou une accélération de la vitesse de propagation des fissures de fatigue. Même sous ces conditions restreintes, différents mécanismes de fragilisation peuvent être activés.

Le dimensionnement mécanique d’une infrastructure hydrogène de grande ampleur, impliquant réseaux de transport et de distribution mais aussi stockage de grandes quantités de gaz, nécessite une quantification précise des baisses de propriétés mécaniques ainsi qu’une meilleure connaissance des mécanismes de dégradation mis en jeu. En effet, s’il existe depuis de nombreuses années plusieurs milliers de km de canalisations pour le transport de H2 aux États-Unis et dans le nord de l’Europe (BeNeLux et France), ces réseaux ont été développés pour des applications industrielles précises et pour des quantités de gaz relativement faibles, avec des marges de sécurité importantes et des intervalles de contrôles spécifiques. Le développement d’infrastructures hydrogène sûres, pour un coût raisonnable, soulève les enjeux principaux suivants en termes de matériaux : 1) compatibilité des installations existantes pour le gaz naturel à l’utilisation d’hydrogène ou de mélange de gaz contenant de l’hydrogène, 2) choix des matériaux pour de nouvelles infrastructures dédiées, 3) établissement de règles de dimensionnement mieux adaptées aux composants en présence d’hydrogène, permettant de réduire les coefficients de sécurité sans risque.

Dans ce contexte, l’objet de cet article est de présenter comment aborder la caractérisation du comportement mécanique des alliages métalliques en présence d’hydrogène gazeux, l’effet des paramètres principaux et les tendances générales entre différentes classes de matériaux.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

hydrogen embrittlement   |   metals   |   gaseous environment   |   mechanical behaviour

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m178


Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Conclusion

Le développement d’une infrastructure de transport ou de stockage de l’hydrogène nécessite de mieux maîtriser et quantifier le comportement mécanique des matériaux pour garantir un niveau de sécurité élevé et des coûts acceptables.

Ceci implique tout d’abord de bien maîtriser les conditions expérimentales, car la sensibilité du matériau à la fragilisation par l’hydrogène va dépendre de facteurs microstructuraux à différentes échelles (phases, joints de grains, précipités, pièges, dislocations, lacunes), des sollicitations mécaniques (monotone, cyclique) et de l’environnement (pression, température, impuretés). Celle-ci est de plus exacerbée en présence d’un défaut (concentration de contrainte ou fissure). Différents indices de fragilisation sont proposés dans la littérature en fonction de la grandeur mécanique mesurée (allongement à rupture, réduction de section, ténacité, vitesse de propagation de fissure, pression d’éclatement…). Ces indices peuvent donner des valeurs très différentes et doivent donc être comparés avec précaution.

Bien qu’incomplets et nécessitant encore de nombreux travaux expérimentaux, les résultats proposés dans la littérature permettent de commencer à établir une cartographie des baisses de propriétés de certaines classes d’alliages métalliques en présence d‘hydrogène gazeux. Ainsi, les aciers ferritiques largement utilisés pour le transport de gaz et pour le stockage sous pression, présentent une sensibilité certaine à la FPH, mais il est néanmoins possible d’adapter les conditions de fonctionnement, ou la fréquence des contrôles périodiques, pour permettre leur utilisation en milieu hydrogène tout en garantissant un niveau de sécurité élevé. Les aciers inoxydables austénitiques stables sont en général considérés compatibles avec une utilisation sous hydrogène sous pression moyennant quelques précautions.

Pour faciliter le développement des infrastructures dédiées à l’hydrogène, l’adaptation ou la rédaction de nouvelles normes est nécessaire. Ce processus est encore en cours. Il repose principalement sur la description des essais mécaniques (et des conditions expérimentales) à réaliser, la définition des critères de dimensionnement (facteurs de sécurité), la mise en...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - POORHAYDARI (K.) -   A Comprehensive Examination of High-Temperature Hydrogen Attack—A Review of over a Century of Investigations.  -  Journal of Material Engineering and Performance, vol. 30, no 11 (2021).

  • (2) - FUJISHIRO (T.), HARA (T.) -   In Situ Observation of Hydrogen-Induced Cracking Propagation Behavior.  -  Corrosion, vol. 74, no 10 (2018).

  • (3) - BOOT (T.), RIEMSLAG (T.), REINTON (E.), LIU (P.), WALTERS (C.L.), POPOVICH (V.) -   In-Situ Hollow Sample Setup Design for Mechanical Characterisation of Gaseous Hydrogen Embrittlement of Pipeline Steels and Welds.  -  Metals, vol. 11 (2021).

  • (4) - BARTHELEMY (H.) -   Compatibility of metallic materials with hydrogen. Review of the present knowledge.  -  International Conference on Hydrogen Safety, San Sebastian, Espagne (sept. 2007).

  • (5) - DE MIGUEL (N.), ACOSTA (B.), MORETTO (P.), BRIOTTET (L.), BORTOT (P.), MECOZZI (E.) -   Hydrogen enhanced fatigue in full scale metallic vessel tests – Results from the MATHRYCE project.  -  International Journal of Hydrogen Energy, vol....

NORMES

  • Bouteilles à gaz transportable – Fragilisation par l’hydrogène des aciers - AFNOR FD E 29-649 - 2004

  • Alternatives rules for construction of high pressure vessels, Boiler and Pressure Vessel Code - ASME Section VIII, Division III - 2019

  • Transportable gas cylinders – Compatibility of cylinder and valve materials with gas contents – Part 4: Tests methods for selecting steels resistant to hydrogen embrittlement - ISO 11114-4 - 2017

  • Corrosion des métaux et alliages – Essais de corrosion sous contrainte – Partie 6 : Préparation et utilisation des éprouvettes préfissurées pour essais sous charge constante ou sous déplacement constant - ISO 7539-6 - 2018

  • Metallic Materials – Unified method of test for the determination of quasistatic fracture toughness - ISO 12135 - 2021

  • Hydrogen piping and pipelines - ASME B31.12 - 2019

  • Standard Test Method for Measurement of Fracture Toughness - ASTM E1820 - 2018

  • ...

ANNEXES

  1. 1 Annuaire

    1 Annuaire

    Organismes – Fédérations – Associations (liste non exhaustive)

    Commission thématique « Corrosion sous contrainte, Fatigue – corrosion et Fragilisation par l’hydrogène » du CEFRACOR :

    https://www.cefracor.org/fr/commissions-thematiques/corrosion-sous-contrainte-fatigue-corrosion-et-fragilisation-par-lhydrogene

    Laboratoires – Bureaux d’études – Écoles – Centres de recherche (liste non exhaustive)

    Commissariat à l’énergie atomique et aux énergies alternatives/Laboratoire d’innovation pour les technologies des énergies nouvelles et les nanomatériaux, CEA/LITEN/DTCH/SCPC/LCA : https://liten.cea.fr/cea-tech/liten/Pages/Accueil.aspx, Grenoble, France

    ISAE-ENSMA, Institut Pprime, département Physique et mécanique des matériaux : https://www.pprime.fr, Poitiers, France

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 93% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Hydrogène

    (48 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS