Présentation
En anglaisRÉSUMÉ
Le courant alternatif triphasé (AC) exige des réseaux de distribution un équilibre générateur-récepteur, et notamment l'introduction de systèmes de sécurité par exemple par onduleurs. Le courant continu (DC) est aussi utilisable. Il présente de nombreux avantages, avec une plus grande simplicité des interconnexions notamment par hacheurs. Dans cet article, sont présentées les diverses possibilités de l'utilisation du réseau AC et du réseau DC, et les moyens de transmettre de la puissance d'un type de réseau à l'autre.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The use of three-phase AC power for the distribution electricity networks requires balance between generators and loads and introduction of security systems with inverters. But DC power may also be used. The DC network is often desirable, because the interconnections and the management of power are simpler with choppers. In this first article, the several possibilities for using AC and DC networks are examined, and how the power from one to the othercan be transfered. In the second article, smart associations AC ?DC are suggested, especially in Brittany.
Auteur(s)
-
Michel PINARD : Normalien, Professeur agrégé Hors Classe - Professeur au conservatoire national des arts et métiers et à l'ESIEE
INTRODUCTION
Qu'est-ce qu'un réseau de distribution électrique de puissance ? Un ensemble de lignes reliant un grand nombre de générateurs, généralement à courant alternatif triphasé, à des récepteurs (ou charges) par l'intermédiaire de transformateurs ou de convertisseurs, car le transport exige l'utilisation de la haute tension.
Au niveau de la charge (ou du consommateur) il faut impérativement :
-
que la valeur efficace de la tension soit constante ;
-
que la fréquence soit constante.
L'opérateur gestionnaire du réseau alternatif triphasé doit, à tout instant :
-
s'assurer que la production de la puissance active équilibre la consommation au niveau des charges et sur les lignes : c'est l'équilibre production-consommation ;
-
s'assurer que la production de la puissance réactive est égale à la consommation au niveau des charges et sur les lignes ;
-
que le système triphasé soit équilibré, et que les déphasages entre générateurs soient contrôlés pour la mise en parallèle ;
-
que le réseau puisse acheminer les transferts de puissance quels que soient les aléas de la consommation ;
-
faire face aux dysfonctionnements possibles dans l'acheminement de la puissance, en particulier en cas de défaut (court-circuit ou circuit ouvert) et prévoir les systèmes de sécurité en conséquence.
L'arrivée des énergies nouvelles (éoliennes, hydroliennes, photovoltaïque...) et des convertisseurs statiques de puissance (à transistors IGBT) incite les installateurs à reconsidérer l'utilisation du régime continu de courant et de tension pour le transport de l'électricité. Cette nouvelle donne amène les électriciens à réfléchir sur l'opportunité de l'utilisation de réseaux à courant continu haute tension au côté des réseaux à courant alternatif. Cette approche est maintenant dénommée réseau HVDC (High-Voltage Direct Current) ou même Smart Grid (réseau intelligent) ou Super Grid...
Parmi les avantages du courant continu (par rapport au triphasé) on constate :
-
qu'il n'y a pas de puissance réactive ;
-
que le réglage de la fréquence n'existe pas ;
-
qu'il n'y a pas de déséquilibre des phases ;
-
que le contrôle des régimes transitoires en cas de court-circuit est plus simple ;
-
qu'il est possible de stocker de l'énergie dans des accumulateurs (batteries ou autres...) mais seulement pour des quantités d'énergie faibles ou moyennes ;
-
que beaucoup de générateurs issus des énergies nouvelles sont à courant continu ;
-
que le contrôle de la tension est facile grâce aux commandes numériques agissant sur les convertisseurs de puissance.
Parmi les inconvénients du courant continu on observe :
-
que le non-passage par zéro du courant rend son interruption difficile ;
-
qu'il est nécessaire de bien dimensionner un hacheur pour élever ou abaisser la tension en passant d'un réseau à l'autre ;
-
que le courant de court-circuit est plus important dans des conditions analogues, ce qui exige un disjoncteur de pouvoir de coupure plus élevé ;
-
que les installateurs de systèmes triphasés ont une longue pratique des réseaux alternatifs, aussi bien pour la régulation en tension et en fréquence des réseaux que pour leur protection ;
-
que le stockage hydraulique de l'énergie reste préférable pour des niveaux d'énergie élevé, et dans ce cas on préfère utiliser un générateur AC.
Ce premier article a pour but de présenter une association complémentaire de deux réseaux, l'un triphasé, le plus souvent déjà installé, l'autre à courant continu, à installer de manière à obtenir des transferts de puissance optimaux entre eux sur les lignes vis-à-vis des consommateurs. Il s'agit d'utiliser au mieux les convertisseurs de puissance, pour gérer grâce aux signaux électroniques de commande :
-
les échanges de puissance active, selon la production des générateurs ;
-
la fourniture de puissance réactive au réseau triphasé ;
-
la réduction de certains harmoniques de courant dans le réseau alternatif ;
-
la protection en cas de court-circuit rendue rapide grâce à l'intervention des convertisseurs de puissance.
KEYWORDS
Chopper | Inverter | Power transfer | Power filter
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Réseau à courant alternatif triphasé (AC) et réseau à courant continu (DC)
1.1 Controverse Edison-Tesla
Au début des années 1880, le standard de la transmission de l'énergie électrique utilisait des lignes traversées par du courant continu (DC line ). C'est ainsi qu'Edison (1847-1931) a installé pour la première fois la distribution de l'électricité à New York en 1882 à Wall Street. La tension utilisée distribuée par le réseau était de 110 V environ, fournie par des dynamos. Malheureusement, avec un générateur à courant continu de 110 V, il est difficile d'alimenter un récepteur au-delà de 1,5 km, à cause des chutes de tension en ligne.
Edison s'oppose violemment à George Westinghouse (1846-1914) et à Nikolas Tesla (1856-1943) tous deux partisans du courant alternatif, à partir de 1886 (AC line ). En effet, l'invention du transformateur permet à partir d'un alternateur d'obtenir des réseaux à haute tension, tels que ceux que l'on peut observer aujourd'hui, en utilisant un transformateur élévateur de tension. Si par la suite, après transport, on « distribue » l'énergie électrique en basse tension, on emploie un transformateur abaisseur de tension. Par ce moyen, il est alors possible d'alimenter un récepteur à des dizaines, voire des centaines de kilomètres. De plus, l'invention du courant alternatif triphasé par Nicolas Tesla permet une transmission de la puissance avec moins de pertes par effet Joule sur les lignes.
Dès 1896, c'est le succès pour Tesla et Westinghouse, le choix des américains comme celui des allemands se portant définitivement sur le courant alternatif triphasé pour le transport de l'énergie électrique. Durant tout le XX e siècle, des centrales où les génératrices sont des machines tournantes à courant alternatif ont été développées et des lignes de transport compatibles avec ce type de courant ont été construites.
Mais, depuis, on installe des centrales solaires à panneaux photovoltaïques, ou des éoliennes offshore génératrices à courant continu. Le moyen de transport le plus adapté pour ce type de générateurs devient alors le courant continu avec des lignes spécialisées.
Cet article a pour but d'essayer d'établir une complémentarité entre les deux types de réseaux afin d'obtenir un fonctionnement plus harmonieux de l'ensemble.
HAUT...TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Réseau à courant alternatif triphasé (AC) et réseau à courant continu (DC)
BIBLIOGRAPHIE
-
(1) - DAHMANI (O.) - Évaluation de l'architecture optimale du réseau électrique d'un champ éolien offshore. - [nbsp ]
-
(2) - BERNARD (C.), SEBRAO-OLIVEIRA (C.), LAVAL (B.), VAUDOUER (C.) - Panneau photovoltaïque et algorithme MPPT à base de logique floue. - http://www.solar-fabrik.de/
-
(3) - FOCH (H.), MEYNARD (T.) - Les convertisseurs statiques. - Percées dans les applications – Révolution dans les architectures.
-
(4) - DEFAY (F.) - Commande prédictive directe d'un convertisseur multicellulaire triphasé pour une application de filtrage actif. - Université de Toulouse, déc. 2008.
-
(5) - IEA International Energy Agency - Mini réseau PV pour électrification rurale. - Rapport AEI-PVPS T9-13:2013 CLUB-ER, Publication Thématique, juil. 2013.
-
(6)...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
LabVIEW National Instruments France : Acquisition de données ; contrôle-commande temps réel
MATLAB/SIMULINK/DSPACE Acquisition de données ; contrôle-commande temps réel
PSIM Copyright 2001-2012 Simulation de systèmes de puissance http://www.powersimtech.com/
HAUT DE PAGE
Câbles sous-marins
ABB's high voltage cable unit in
Sweden
Phone : + 46 455 556 00
Fax : + 46 455 556 55
E-Mail : [email protected]
Réseau DC grid autour de l'Europe http://www.leonardo-energy.org/
ENEA Consulting 89, rue Réaumur 75002 Paris France [email protected]
HAUT DE PAGECet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive