Présentation

Article

1 - LA TERRE COMME CONDUCTEUR ÉLECTRIQUE

2 - RAPPELS SUR LA MÉTHODE DE MODÉLISATION

3 - VALIDATION ET ANALYSE DE SENSIBILITÉ

4 - CONCEPTION ET DIMENSIONNEMENT D’UN RÉSEAU DE TERRE

5 - MODÉLISATION SYSTÈME

6 - CONCLUSION

7 - GLOSSAIRE

8 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : D3074 v1

Modélisation système
Modélisation par circuits électriques équivalents des réseaux de terre - Application

Auteur(s) : James ROUDET, Edith CLAVEL, Jean-Michel GUICHON, Alexis DERBEY, Patrice JOYEUX

Date de publication : 10 nov. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les réseaux de terre jouent un rôle essentiel dans la protection du bâtiment et des personnes contre les agressions externes comme la foudre. Ceux-ci sont appelés à jouer des rôles de plus en plus importants dans le cadre du bâtiment dit intelligent bardé de dispositifs électriques. Cet article propose une méthode de modélisation adaptée aux particularités des conducteurs enterrés. Les modèles proposés couvrent une large gamme de fréquences et s’expriment sous forme de circuits électriques équivalents et facilement implantables dans un logiciel de simulation 0D permettant d’intégrer des sources de perturbation externes, des composants et systèmes hétérogènes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • James ROUDET : Professeur des universités Université Grenoble Alpes, CNRS, Grenoble INP, G2Elab, Grenoble, France

  • Edith CLAVEL : Maître de conférences HdR Université Grenoble Alpes, CNRS, Grenoble INP, G2Elab, Grenoble, France

  • Jean-Michel GUICHON : Maître de conférences Université Grenoble Alpes, CNRS, Grenoble INP, G2Elab, Grenoble, France

  • Alexis DERBEY : Ingénieur CNRS Université Grenoble Alpes, CNRS, Grenoble INP, G2Elab, Grenoble, France

  • Patrice JOYEUX : Ingénieur Hager Company, Hager Electro, Obernai, France

INTRODUCTION

Cet article a pour ambition de montrer quels sont les modèles utilisables dans une simulation de type « circuit ou 0D » de l’écoulement des courants parasites (foudre, perturbations CEM…) dans un bâtiment qu’il soit résidentiel ou industriel. De nombreux travaux modélisent les phénomènes complexes de conduction des courants au sein de la terre sans pour autant aboutir à un modèle système simple utilisable. À la complexité physique se rajoute l’hétérogénéité de la terre elle-même ou la présence de matériaux divers (conduites, remblais…). Cela mène potentiellement à l’impossibilité de décrire dans son entièreté le milieu. Dans l’objectif du dimensionnement d’une installation électrique bien d’autres éléments complexes viennent s’ajouter et l’idée, ici, est de proposer une étude globale mais pertinente du comportement du bâtiment et non de phénomènes locaux très fins et partiels.

Ce second volet fait suite à l’article [D 3 073] dans lequel ont été explicités des modèles électriques valables sur une large gamme de fréquence de conducteurs enterrés de géométrie plus ou moins complexe et représentatifs de situations réelles. L’utilisation de ces modèles permet d’obtenir les ordres de grandeur et les paramètres géométriques dimensionnant des prises de terre élémentaires ou d’autres conducteurs enterrés grâce à des analyses de sensibilité. Dans un second temps l’exemple d’un bâtiment complet incluant les divers câblages et des matériels connectés est traité montrant l’efficacité des modèles et de l’approche système.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3074


Cet article fait partie de l’offre

Réseaux électriques et applications

(179 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Modélisation système

5.1 Principe

Tout l’enjeu de cette partie est de mettre en œuvre la modélisation de dispositifs de mise à la terre dans la modélisation d’une installation réelle.

Cette installation contient non seulement des systèmes de mise à la terre mais aussi des charges de différentes natures (moteurs, électroniques de puissance, transformateurs…) connectées (différents types de câblage) ainsi que des systèmes de protections (parafoudre, DDR…).

Afin de proposer une simulation de l’installation complète, il nous faut disposer d’un modèle pour chaque constituant de cette installation.

Tout d’abord, dans cette partie, un focus est fait concernant la modélisation de l’ensemble des dispositifs de mise à la terre d’une installation réelle afin de déterminer l’impact des couplages entre eux. Cela nous permettra ainsi de conclure sur la possibilité ou non de créer une bibliothèque de modèles indépendants.

Par la suite, la simulation complète d’une installation réelle permettra la mise en avant de la puissance de la démarche de modélisation pour disposer de :

  • l’évolution temporelle de grandeurs (tensions et/ou courants en certains points identifiés) ;

  • grandeurs globales :

  • la comparaison de solutions technologiques.

HAUT DE PAGE

5.2 Impact du couplage entre éléments d’un dispositif de mise à la terre

Des équations (7), (8) et (9), un schéma équivalent...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux électriques et applications

(179 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modélisation système
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - EDF -   H115 : Principes de conception et de réalisation des mises à la terre.  -  EDF NI 115 (1984).

  • (2) - PARNOUX (C.) -   Guide de la mesure de la terre.  -  Éd. 4 (2013) http://www.chauvin-arnoux.com/sites/ default/files/documents/dc_f_guide- terre_ed4.pdf.

  • (3) - SILVEIRA (F.H.), VISACRO (S.), ALIPIO (R.), DE CONTI (A.) -   Lightning-induced voltages over lossy ground : the effect of frequency dependence of electrical parameters of soil.  -  IEEE Transactions on Electromagnetic Compatibility, vol. 56, issue 5, p. 1129-1136 (2014).

  • (4) - PAPAIZ GARBINI (G.) -   Contribution au calcul des élévations de potentiel de sol en contexte ferroviaire.  -  Thèse de doctorat, Université Paris Sud, 25 juin 2015.

  • (5) - LEGRAND (X.) -   Modélisation des systèmes de mise à la terre des lignes électriques soumises à des transitoires de foudre.  -  Thèse de doctorat, École centrale de Lyon, déc. 2007.

  • ...

1 Outils logiciels

ALTAIR FLUX, [Flux][Flux-PEEC] ALTAIR 15, Chemin de Malacher, 38340 Meylan, France

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux électriques et applications

(179 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS