Présentation
En anglaisRÉSUMÉ
Il existe une nouvelle approche méthodologique en conception assistée des systèmes complexes, utilisable notamment en électronique de puissance. La schématique classique a des limitations intrinsèques, que cette avancée peut repousser. Le langage normalisé VHDL-AMS propose des mécanismes avancés qui restent méconnus et très largement sous-utilisés. Ils permettent la mise en œuvre des méta-schémas et de leur configuration. Cette approche, une fois maîtrisée, ouvre la porte à des améliorations méthodologiques dont toutes les conséquences bénéfiques restent à explorer.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article deals with a new methodological approach in the computer-assisted design of complex systems which can be used notably in power electronics. This technological progress is able to push back the limits of traditional schematics. The standardized VHDL-AMS language presents advanced mechanisms which remain little known and used. They allow for the implementation and configuration of meta-schemes. Once mastered, this approach opens the door to methodological improvements, the whole beneficial consequences of which remains to be explored.
Auteur(s)
-
Yannick HERVÉ : Agrégé de génie électrique - Maître de conférences hors-classe - Enseignant-chercheur, Université de Strasbourg
INTRODUCTION
L'objectif de cet article est d'introduire une nouvelle approche méthodologique en conception assistée des systèmes complexes utilisable notamment en électronique de puissance. En effet, la schématique classique, universellement utilisée comme vecteur de représentation des systèmes, présente des limitations intrinsèques : généralisation, généricité, exploration de configuration… Dans ce document, nous présentons la notion de méta-schéma qui sera mise en œuvre grace au mécanisme général de configuration.
Le langage normalisé VHDL-AMS propose des mécanismes avancés qui restent méconnus et très largement sous-utilisés. Ils permettent la mise en œuvre des méta-schémas et de leur configuration. Après leur présentation théorique, nous les illustrerons sur des exemples.
Cette approche, une fois maîtrisée, ouvre la porte à des améliorations méthodologiques dont toutes les conséquences bénéfiques restent à explorer.
Remarque préliminaire : les codes sources, donnés en exemple, ont été écrit dans le respect de la norme en cours. Ils ont été compilés et vérifiés avec un outil industriel du commerce. Selon le taux de couverture de la norme de chacun des outils du marché, il est possible que certains exemples ne soient pas complètement supportés ou doivent être adaptés.
MOTS-CLÉS
méthodologie langage de modelisation modélisation conception assistée par ordinateur Electronique de puissance technologie de la conception VHDL-AMS
KEYWORDS
methodology | modelling language | modelling | computer aided design | power electronics | design technology | VHDL-AMS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Langage VHDL-AMS
Le langage VHDL-AMS permet de décrire le comportement ou la structure d'un système mélangeant différents paradigmes de fonctionnement en interaction à différents niveaux d'abstraction. C'est un des outils du concepteur pouvant l'assister durant toutes les étapes de la conception technique d'un système, quelle que soit sa taille ou sa complexité. Ses qualités de formalisation, de prise en charge de différents niveaux d'abstraction, de mélange des disciplines techniques, son intégration dans des outils de CAO/EAO généraux et le fait qu'il repose sur une norme issue de l'association internationale IEEE en font un outil très performant pour le concepteur dans l'entreprise élargie à tous ses collaborateurs (donneurs d'ordre, partenaires, sous-traitants, fournisseurs, etc.).
Le langage de description de matériel VHDL-AMS est un langage riche et relativement complexe. Comme tout langage, il possède une syntaxe et une ou plusieurs sémantiques, c'est-à-dire qu'il est défini par un vocabulaire et une grammaire et que toute instruction formée selon les règles de la syntaxe possède une ou plusieurs interprétations non ambiguës. Le type de sémantique considéré ici est une sémantique exécutable réalisée pratiquement sous la forme d'un simulateur. Cela signifie que tout ensemble d'instructions VHDL-AMS peut être exécuté par un programme, le simulateur, pour calculer un ensemble de réponses en fonction d'un ensemble de stimuli. Un autre type possible de sémantique exécutable serait une sémantique de synthèse pour laquelle un ensemble d'instructions VHDL-AMS permetteraient d'inférer une structure de réalisation en fonction de contraintes de conception (par exemple sur les performances attendues, le coût de réalisation ou la consommation).
Un modèle VHDL-AMS, dans la définition de ce document, est un ensemble d'instructions VHDL-AMS légales dont le but est de décrire avec plus ou moins de détails le comportement ou la structure d'un système matériel donné. Un tel modèle est exécutable grâce à un simulateur et possède une sémantique de simulation bien définie. Le langage VHDL 7.2 est issu d'un projet de recherche américain (VHSIC), puis est devenu une norme IEEE en 1987, renormalisé en 1993, 2002 et 2008 connu sous la référence IEEE 1076. Il a été conçu pour la modélisation, la simulation et la synthèse de systèmes matériels logiques. Il est aujourd'hui très largement utilisé et il est accepté par tous...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Langage VHDL-AMS
BIBLIOGRAPHIE
-
(1) - ASHENDEN (P.J.) - The Designer's Guide to VHDL (Systems on Silicon). - Morgan Kaufmann, ISBN : 1558606742 (2002).
-
(2) - HERVÉ (Y.) - VHDL-AMS : Applications et enjeux industriels. - Dunod, ISBN 9782100058884 (2002).
-
(3) - ROUILLARD (J.) - Lire et comprendre VHDL et AMS (en ligne). - ISBN 978-1-4092-2787-8.
DANS NOS BASES DOCUMENTAIRES
Les outils principaux supportant le langage VHDL-AMS à la mise sous presse sont :
-
Portunus de Adapted Solutions http://www.adapted-solutions.com
-
SMASH de Dolphin Integration http://www.dolphin-integration.com
-
SystemVision de Mentor Graphics https://eda.sw.siemens.com/en-US/
-
Questa ADMS de Mentor Graphics http://www.mentorgraphics.com
-
Simplorer de ANSYS http://www.ansys.com
LRM07 (2007), Language Rerefence Manual, IEEE 1076.1-2007, IEEE Standard VHDL Analog and Mixed-Signal Extension 2007
eISBN : 0-7381-5628-0 ISBN : 0-7381-5627-2, Publication IEEE
HAUT DE PAGECet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive