Présentation
EnglishRÉSUMÉ
La valorisation de la biomasse est au cœur des interrogations sur les ressources énergétiques au cours du xxie siècle. Pour les biomasses humides, un procédé intéressant de valorisation est la gazéification en eau supercritique, qui permet la production d'un gaz énergétique très intéressant de par son origine non fossile. La gazéification en eau supercritique s'adresse plus particulièrement à des biomasses très humides. L'influence des conditions opératoires principales sur la nature et les rendements de conversion de ce procédé sont détaillés et les pilotes de laboratoire les plus importants sont présentés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Olivier BOUTIN : Ingénieur École nationale supérieure des Industries chimiques, Docteur en Génie des procédés - Ingénieur-chercheur au Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA Marcoule)
-
Jean-Christophe RUIZ : Ingénieur-chercheur au Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA Marcoule) - Responsable du projet Eau supercritique au sein du laboratoire des Procédés supercritiques et de Décontamination.
INTRODUCTION
La valorisation de la biomasse est au cœur des interrogations sur les ressources énergétiques au cours du xxi e siècle. Elle en est un des enjeux majeurs. Le terme biomasse regroupe des significations très diverses, depuis une biomasse noble destinée à l'alimentation, comme les céréales, jusqu'à des biomasses assimilables à des déchets comme les vinasses issues de la fabrication de betterave ou les boues biologiques de station d'épuration. Dans le cas des biomasses humides un procédé de valorisation d'intérêt est la gazéification en eau supercritique. Ce procédé permet d'éviter une étape de séchage et, moyennant des conditions de pression et de température adéquates, la production d'un gaz énergétique pouvant contenir de l'hydrogène, du méthane, du monoxyde de carbone et/ou des hydrocarbures légers. L'intérêt suscité par ce procédé est donc à situer dans la problématique globale de l'accès à une énergie d'origine non fossile ainsi que dans la problématique des gaz à effet de serre, l'utilisation de biomasse s'insérant dans un cycle court du carbone. La gazéification en eau supercritique s'adresse plus particulièrement à des biomasses très humides (plus de 70 % d'humidité) qu'il n'est donc pas nécessaire de sécher au préalable. Les températures de réaction sont relativement basses (maximum de 700 °C), comparées aux procédés de gazéification en voie classique ou sèche (typiquement 900 °C). Cela limite la production de gaz polluants, type dioxines ou NOx. De même, le milieu aqueux de solvatation permet de limiter la formation de solides et de goudrons. Les gaz visés sont l'hydrogène principalement, mais également un mélange hydrogène et monoxyde de carbone (mélange pour la synthèse Fisher Tropsch), ou la production de méthane. L'influence des conditions opératoires principales sur la nature et les rendements de conversion sera détaillée dans cet article (pression, température, concentration initiale de la biomasse, présence ou non de catalyseurs). Le développement industriel de ce procédé n'étant pas réalisé à ce jour, les pilotes de laboratoire les plus importants (jusqu'à 100 kg.h-1) seront présentés.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Chimie verte > Gestion durable des déchets et des polluants > Gazéification de biomasse en eau supercritique > Conclusion
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Chimie verte > Énergie durable et biocarburants > Gazéification de biomasse en eau supercritique > Conclusion
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech industrielles pour la chimie et l’énergie > Gazéification de biomasse en eau supercritique > Conclusion
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Opérations unitaires. Génie de la réaction chimique > Génie des procédés et protection de l'environnement > Gazéification de biomasse en eau supercritique > Conclusion
Accueil > Ressources documentaires > Environnement - Sécurité > Environnement > Gestion et valorisation des déchets > Gazéification de biomasse en eau supercritique > Conclusion
Accueil > Ressources documentaires > Énergies > Ressources énergétiques et stockage > Énergies renouvelables modulables > Gazéification de biomasse en eau supercritique > Conclusion
Cet article fait partie de l’offre
Métier : ingénieur territorial
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Présentation
5. Conclusion
La gazéification en eau supercritique permet d'obtenir un gaz valorisable à partir de biomasses humides. Schématiquement, elle se fait en deux étapes : rupture des chaînes carbonées conduisant à la formation de gaz, suivie par des réactions entre ces gaz dont la composition finale à l'équilibre thermodynamique est gérée par trois réactions principales. Le fait d'être dans les conditions supercritiques permet de travailler avec des biomasses humides (la pression évitant la vaporisation de l'eau), sans étape de séchage préalable de la biomasse, et dans un milieu homogène fluide – solide. Les gaz formés sont aisément séparés par détente du mélange en fin de procédé.
Il est possible d'orienter la réaction vers la production de CH4 (et autres hydrocarbures légers). Dans ce cas, de faibles températures doivent être envisagées (aux environs de 450 °C) et les rendements de conversion sont en général assez faibles. Les débouchés peuvent être aussi la formation d'un mélange CO/H2, précurseur du procédé Fisher-Tropsch servant à la fabrication d'un carburant de synthèse liquide. L'obtention d'une quantité suffisante de CO nécessite de travailler loin de l'équilibre thermodynamique. Enfin, en travaillant aux plus hautes températures, il est possible d'obtenir d'importantes quantités de H2. Pour tous ces éléments, la réaction du gaz à l'eau joue souvent un rôle prépondérant parmi les réactions entre les gaz formés. Une partie de l'hydrogène proviendrait cependant de la dissociation de l'eau, catalysée par du carbone, mais l'établissement de bilans matière précis pour évaluer cette quantité est en général difficile à conduire.
Pour modifier les rendements de gazéification et la composition des gaz, il est possible d'additionner au milieu des catalyseurs (dont certains peuvent être parfois présents dans la biomasse initiale) ou de faire varier la température, usuellement avec un maximum de 700 - 800 °C. Couplé au milieu aqueux de forte densité, la formation d'éléments toxiques de type NOx ou dioxines est en général évitée. Pour atteindre ces objectifs de température et limiter l'apport énergétique externe, il peut être intéressant de travailler en oxydation partielle afin de produire in situ l'énergie nécessaire au chauffage du milieu.
Ce procédé...
Cet article fait partie de l’offre
Métier : ingénieur territorial
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Conclusion
BIBLIOGRAPHIE
-
(1) - LEUSBROCK (I.), METZ (S.), REXWUNKEL (G.), VERSTEEG (G.) - Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water. - Journal of Supercritical Fluids, 47, 117 (2008).
-
(2) - KHAN (M.S.), ROGAK (S.) - Solubility of Na2SO4, Na2CO3 and their mixture in supercritical water. - Journal of Supercritical Fluids, 30, 359 (2004).
-
(3) - GUAN (Q.), SAVAGE (P.), WEI (C.) - Gasification of alga Nannochloropsis sp. in supercritical water. - Journal of Supercritical Fluids, 61, 139 (2012).
-
(4) - CHAKINALA (A.), BRILMAN (D.), VAN SWAAIJ (W.), KERSTEN (S.) - Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. - Industrial Engineering Chemistry Research, 49, 1113 (2010).
-
(5) - SCHMIEDER (H.), ABEL (J.), BOUKIS (N.), DINJUS (E.) - Hydrothermal gasification of biomass and organic wastes. - Journal of Supercritical Fluids, 17, 145 (2000).
-
...
DANS NOS BASES DOCUMENTAIRES
1 Organismes – Fédérations – Associations
Association Innovation Fluides Supercritiques IFS
http://wikini.supercriticalfluid.org
Association International Society for Advancement of Supercritical Fluids ISASF
HAUT DE PAGECet article fait partie de l’offre
Métier : ingénieur territorial
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses