Article

1 - DIFFÉRENTES STRATÉGIES DE TRANSMUTATION DES ACTINIDES MINEURS

2 - COMPOSITION DES COMBUSTIBLES DE TRANSMUTATION

3 - COMPORTEMENT SOUS IRRADIATION DES COMBUSTIBLES CÉRAMIQUES RÉFRACTAIRES

4 - FABRICATION DES COMBUSTIBLES ET CIBLES DE TRANSMUTATION

5 - RETRAITEMENT DES COMBUSTIBLES ET CIBLES DE TRANSMUTATION

6 - CONCLUSION

Article de référence | Réf : BN3645 v1

Combustibles et cibles pour la transmutation de déchets radioactifs HAVL

Auteur(s) : Sylvie PILLON, Dominique WARIN

Date de publication : 10 juil. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Parmi les déchets nucléaires, les plus dangereux sont ceux à haute activité et à vie longue (HAVL). Ils émettent des rayons ionisants durant plusieurs milliers voire millions d'années, dégageant par la même occasion d'importantes quantités de chaleur. Le combustible usé est composé principalement de plutonium, d'actinides (américium, curium et neptunium) dits « mineurs » car en faible quantité, et enfin des produits de fission. Pour traiter les actinides mineurs, il faut d'abord les séparer du combustible usé, puis réaliser une réaction de transmutation. Cette réaction permet de les fragmenter, réduisant leur radiotoxicité (ils émettent alors des rayons bêta, beaucoup moins toxiques que les rayons alpha au préalable) et réduisant également leur période pour retrouver une stabilité. Cet article présente ainsi les composés des combustibles usés, ainsi que les méthodes et les pratiques de séparation et de transmutation.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Among nuclear waste the most hazardous type is the high-level and long-lived (HLLL) . It emits ionizing radiation for several thousands and even million of years and thus significant amounts of heat. The spent fuel is mainly composed of plutonium, actinides (americium, curium and neptunium) called "minor" due to their presence in low quantities and finally fission products. In order to treat minor actinides, they must be separated from the spent fuel and a transmutation reaction must be implemented. This reaction allows for their fragmentation, reducing their radio toxicity (they then emit beta radiation which are far less toxic than the previous alpha radiations) and also reducing the time they require to recover stability. This article presents spent fuel components as well as the methods and processes for separation and transmutation.

Auteur(s)

  • Sylvie PILLON : Expert sénior au Commissariat à l'énergie atomique et aux énergies alternatives - Chef du laboratoire de conception et d'irradiation des combustibles innovants

  • Dominique WARIN : Chef du département Radiochimie et Procédés au Commissariat à l'énergie atomique et aux énergies alternatives

INTRODUCTION

Les radionucléides à vie longue contenus dans les assemblages de combustibles usés sont responsables de la persistance de la radioactivité pendant plusieurs milliers, voire plusieurs millions d'années. Les principaux éléments contribuant à la radiotoxicité du combustible usé sont, d'une façon prépondérante, le plutonium (1 % du combustible usé), les actinides américium, curium et neptunium dits « mineurs » car en faible quantité (0,07 % du combustible usé) et enfin les produits de fission (4 % du combustible usé).

Le plutonium, considéré en France comme une ressource et non un déchet, fait déjà l'objet d'une stratégie de recyclage industriel mise en œuvre dans les REP, au moyen des combustibles MOX. Pour les autres radionucléides à vie longue présents dans les déchets, des recherches sont menées au niveau international sur des solutions permettant leur séparation du combustible usé et leur transmutation en éléments à vie courte ou inertes dans les réacteurs nucléaires, solution alternative à leur stockage géologique en matrice vitreuse.

Les recherches, menées en France jusqu'en 2006 dans le cadre de la loi du 30 décembre 1991 sur la gestion des déchets radioactifs à haute activité et à vie longue et poursuivies aujourd'hui dans le cadre de la loi du 28 juin 2006, relative à la gestion durable des matières et déchets radioactifs, montrent d'une part que tous les types de réacteur nucléaire n'offrent pas le même potentiel de transmutation et d'autre part, que tous les radionucléides ne peuvent être transmutés de façon efficace. Ainsi, les meilleures performances de transmutation sont obtenues en réacteur à spectre neutronique rapide et la transmutation n'est raisonnablement applicable que pour les actinides mineurs (principalement américium, neptunium et curium). Pour les produits de fission, leur contribution à l'inventaire de la radiotoxicité décroît au bout de plusieurs centaines d'années, ce qui, conjugué à des difficultés techniques de mise en œuvre, réduit fortement l'intérêt de leur transmutation.

La transmutation des actinides mineurs s'accompagne nécessairement de leur séparation préalable individuelle ou groupée, du combustible usé. La séparation et la transmutation sont donc les deux étapes indissociables sur lesquelles les recherches se poursuivent intensément depuis 1991 et dont cet article se propose de faire le point.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bn3645


Cet article fait partie de l’offre

Génie nucléaire

(170 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(170 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   Systèmes nucléaires du futur, génération IV.  -  Clés CEA, no 55, (2007).

  • (2) - BAILLY (H.), MENESSIER (D.), PRUNIER (C.) -   Le combustible nucléaire des réacteurs à eau sous pression et des réacteurs à neutrons rapides – conception et comportement.  -  Eyrolles (1996).

  • (3) - CARMACK (W.J.) et al -   Metallic fuels for advanced reactors.  -  Journal of Nuclear Materials, 392, p. 139-150 (2009).

  • (4) - RAISON (P.E.), HAIRE (R.G.) -   Structural investigation of the pseudo-ternary system AmO2-Cm2O3-ZrO2 as potential materials for transmutation.  -  Journal of Nuclear Materials, 230, p. 31-35 (2003).

  • (5) - HAYES (S.) et al -   Status of transuranic bearing metallic fuel development.  -  Proceedings of GLOBAL 2009 Conference (2009).

  • (6) - MAEDA (K.) et al -   Short-term...

1 Site Internet

Projet européen EUROTRANS du 6e PCRD http://hal.in2p3.fr/in2p3-00195198

Projet européen CONFIRM du 5e PCRD http://cordis.europa.eu

HAUT DE PAGE

2 Sources de documentation

Les déchets radioactifs à haute activité et à vie longue/Recherches et résultats. Loi du 30 décembre 1991. Axe 1.

Rapport final de décembre 2005 (Œuvre collective CEA).

Rapport CEA/DEN/DDIN/2005-568.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(170 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS