Présentation
EnglishRÉSUMÉ
Parmi les déchets nucléaires, les plus dangereux sont ceux à haute activité et à vie longue (HAVL). Ils émettent des rayons ionisants durant plusieurs milliers voire millions d'années, dégageant par la même occasion d'importantes quantités de chaleur. Le combustible usé est composé principalement de plutonium, d'actinides (américium, curium et neptunium) dits « mineurs » car en faible quantité, et enfin des produits de fission. Pour traiter les actinides mineurs, il faut d'abord les séparer du combustible usé, puis réaliser une réaction de transmutation. Cette réaction permet de les fragmenter, réduisant leur radiotoxicité (ils émettent alors des rayons bêta, beaucoup moins toxiques que les rayons alpha au préalable) et réduisant également leur période pour retrouver une stabilité. Cet article présente ainsi les composés des combustibles usés, ainsi que les méthodes et les pratiques de séparation et de transmutation.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Sylvie PILLON : Expert sénior au Commissariat à l'énergie atomique et aux énergies alternatives - Chef du laboratoire de conception et d'irradiation des combustibles innovants
-
Dominique WARIN : Chef du département Radiochimie et Procédés au Commissariat à l'énergie atomique et aux énergies alternatives
INTRODUCTION
Les radionucléides à vie longue contenus dans les assemblages de combustibles usés sont responsables de la persistance de la radioactivité pendant plusieurs milliers, voire plusieurs millions d'années. Les principaux éléments contribuant à la radiotoxicité du combustible usé sont, d'une façon prépondérante, le plutonium (1 % du combustible usé), les actinides américium, curium et neptunium dits « mineurs » car en faible quantité (0,07 % du combustible usé) et enfin les produits de fission (4 % du combustible usé).
Le plutonium, considéré en France comme une ressource et non un déchet, fait déjà l'objet d'une stratégie de recyclage industriel mise en œuvre dans les REP, au moyen des combustibles MOX. Pour les autres radionucléides à vie longue présents dans les déchets, des recherches sont menées au niveau international sur des solutions permettant leur séparation du combustible usé et leur transmutation en éléments à vie courte ou inertes dans les réacteurs nucléaires, solution alternative à leur stockage géologique en matrice vitreuse.
Les recherches, menées en France jusqu'en 2006 dans le cadre de la loi du 30 décembre 1991 sur la gestion des déchets radioactifs à haute activité et à vie longue et poursuivies aujourd'hui dans le cadre de la loi du 28 juin 2006, relative à la gestion durable des matières et déchets radioactifs, montrent d'une part que tous les types de réacteur nucléaire n'offrent pas le même potentiel de transmutation et d'autre part, que tous les radionucléides ne peuvent être transmutés de façon efficace. Ainsi, les meilleures performances de transmutation sont obtenues en réacteur à spectre neutronique rapide et la transmutation n'est raisonnablement applicable que pour les actinides mineurs (principalement américium, neptunium et curium). Pour les produits de fission, leur contribution à l'inventaire de la radiotoxicité décroît au bout de plusieurs centaines d'années, ce qui, conjugué à des difficultés techniques de mise en œuvre, réduit fortement l'intérêt de leur transmutation.
La transmutation des actinides mineurs s'accompagne nécessairement de leur séparation préalable individuelle ou groupée, du combustible usé. La séparation et la transmutation sont donc les deux étapes indissociables sur lesquelles les recherches se poursuivent intensément depuis 1991 et dont cet article se propose de faire le point.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Conclusion
La transmutation des actinides mineurs est à l'étude de façon poussée depuis 1991. D'abord centrées sur la transmutation en ADS et en RNR-Na en mode homogène et hétérogène dans des cibles sur support inerte, les études se poursuivent désormais sur le recyclage hétérogène dans les couvertures fertiles. Dans tous les cas, ces combustibles nouveaux par leur composition, leur conception et leur condition d'irradiation nécessitent d'être qualifiés à l'aide de programmes expérimentaux destinés à maîtriser leur performance et leur comportement en toute situation. Ces programmes ont déjà apporté, grâce en particulier au réacteur Phénix jusqu'en 2009, un lot conséquent de résultats prometteurs. Ils se poursuivent maintenant dans les réacteurs expérimentaux à neutrons thermiques en fonctionnement et disponibles en Europe : OSIRIS en France et HFR dans les Pays-Bas. Le réacteur RJH en construction au CEA/Cadarache devrait permettre de réaliser de nouvelles expériences de transmutation en spectre de neutrons thermiques à partir de 2015. Le réacteur ASTRID, premier prototype de la filière RNR-Na de type GEN IV, devrait prendre le relais entre 2020 et 2025.
Les principaux résultats notables acquis sont la démonstration de la faisabilité technique de la transmutation sur le plan du cycle du combustible, comprenant la fabrication, l'irradiation en réacteur et la séparation au moins pour le neptunium et l'américium dans le cas d'une transmutation en mode homogène et hétérogène (sur support inerte) en RNR-Na. Seules les performances de transmutation restent encore à optimiser.
En RNR-Na, les oxydes mixtes d'uranium et de plutonium à faible teneur en actinides mineurs (environ 2,5 %) ont montré un comportement très proche de celui du combustible standard. Pour une expérience de transmutation menée jusqu'à 6,4 at%, il n'a pas été détecté de conséquences négatives de la présence d'actinides mineurs ni de la forte production d‘hélium, généré par transmutation de l'américium. Les fortes températures favorisent son relâchement au fur et à mesure de sa production. Grâce à des volumes d'expansion standards largement dimensionnés, le combustible RNR-Na peut accommoder les actinides mineurs aux teneurs requises sans modification notable de son dimensionnement. Une démonstration en pile de performances de ce combustible jusqu'à 15-20 at% de combustion est encore nécessaire pour confirmer...
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - Systèmes nucléaires du futur, génération IV. - Clés CEA, no 55, (2007).
-
(2) - BAILLY (H.), MENESSIER (D.), PRUNIER (C.) - Le combustible nucléaire des réacteurs à eau sous pression et des réacteurs à neutrons rapides – conception et comportement. - Eyrolles (1996).
-
(3) - CARMACK (W.J.) et al - Metallic fuels for advanced reactors. - Journal of Nuclear Materials, 392, p. 139-150 (2009).
-
(4) - RAISON (P.E.), HAIRE (R.G.) - Structural investigation of the pseudo-ternary system AmO2-Cm2O3-ZrO2 as potential materials for transmutation. - Journal of Nuclear Materials, 230, p. 31-35 (2003).
-
(5) - HAYES (S.) et al - Status of transuranic bearing metallic fuel development. - Proceedings of GLOBAL 2009 Conference (2009).
-
(6) - MAEDA (K.) et al - Short-term...
DANS NOS BASES DOCUMENTAIRES
Projet européen EUROTRANS du 6e PCRD http://hal.in2p3.fr/in2p3-00195198
Projet européen CONFIRM du 5e PCRD http://cordis.europa.eu
HAUT DE PAGE
Les déchets radioactifs à haute activité et à vie longue/Recherches et résultats. Loi du 30 décembre 1991. Axe 1.
Rapport final de décembre 2005 (Œuvre collective CEA).
Rapport CEA/DEN/DDIN/2005-568.
HAUT DE PAGECet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive