Présentation
RÉSUMÉ
Cet article traite de l’utilisation du transformateur piézoélectrique (TP) dans les convertisseurs électroniques de petite puissance, 0,1 à 10 W. Sa topologie monolithique planaire simple - disques ou barreaux - permet la réalisation de convertisseurs de faible encombrement, peu coûteux et bien adaptés aux applications embarquées. La conversion d’énergie électrique s’opère par double conversion, électrique-mécanique puis mécanique-électrique, basée sur la création d’une onde stationnaire ou progressive au sein du matériau piézoélectrique. L’article aborde le principe de fonctionnement, la modélisation puis la mise en œuvre pour réaliser divers types de conversion DC-DC ou DC-AC. Le fonctionnement électrique, les performances et les limitations des structures proposées sont analysés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
François COSTA : Professeur émérite à l’université Paris-Est Créteil - Ancien directeur et chercheur au laboratoire SATIE – ENS Paris-Saclay, France
-
Dejan VASIC : Professeur des universités à CY Cergy Paris Université - Chercheur au laboratoire SATIE – ENS Paris-Saclay, France
INTRODUCTION
Depuis quelques années, le champ d’utilisation des matériaux piézoélectriques, historiquement réservés aux dispositifs électroacoustiques, aux capteurs mécaniques puis aux actionneurs de précision, continue de s’agrandir, notamment avec de nouvelles applications identifiées en électronique de puissance grâce à la mise en œuvre de transformateurs piézoélectriques. L’objectif de cet article est de présenter les opportunités offertes par ce type de composant en termes de réalisation d’alimentations spécifiques nécessitant par exemple une très forte compacité, et/ou des niveaux élevés de tension, et/ou une forte isolation galvanique primaire-secondaire. Après quelques rappels sur les principes physiques mis en jeu, les auteurs présentent : les structures usuelles de transformateurs piézoélectriques (§ 1) ; leur mode de fonctionnement est ensuite étudié de façon détaillée (§ 2 et 3) ; un nouveau mode de commande basé non plus sur une onde stationnaire mais sur une onde progressive est ensuite présentée (§ 4) ; enfin, quelques structures de conversion statique ainsi que les régimes de commande associés sont posés et analysés (§ 5).
VERSIONS
- Version archivée 1 de févr. 2005 par Emmanuel SARRAUTE, Dejan VASIC, François COSTA
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Mise en œuvre dans les convertisseurs statiques
5.1 Spécificités des convertisseurs statiques à transformateurs piézoélectriques
Comme on l’a montré plus haut, le transformateur piézoélectrique (TP) se comporte principalement comme un quadripôle sélectif : il peut transmettre de la puissance s’il fonctionne autour de sa résonance, sa bande passante est donc étroite. En conséquence, le rendement et le gain (rapport de transformation) fluctuent largement avec sa charge. Cela constitue une différence très importante par rapport à un transformateur magnétique où ces deux paramètres sont quasiment constants sur une grande dynamique de charge et de fréquences de fonctionnement. Cette spécificité trouve donc des conséquences vis-à-vis des structures de conversion dans lesquelles ils sont plongés ainsi que leurs modes de commande. Ainsi, il faudra distinguer les familles d’applications selon la variabilité de la charge et de la tension de sortie. La structure de conversion peut exploiter la caractère capacitif du TP pour assurer une commutation du convertisseur en mode ZVS (Zéro Voltage Switching), la structure est très simple. Aussi, selon le degré de variabilité de la charge, ce mode de fonctionnement doit être étendu par des composants réactifs supplémentaires.
De façon générale, le caractère intrinsèquement capacitif du transformateur piézoélectrique conduit à devoir gérer dans la structure des énergies réactives qui contribueront soit à dégrader le facteur de dimensionnement des interrupteurs lorsque des inductances sont associées (existence de régimes oscillants), soit à dégrader le taux de transmission de puissance (rapport entre le temps pendant lequel le transfert de puissance s’opère et la période de découpage).
HAUT DE PAGE5.2 Famille de structures et régimes de commande
Compte tenu de la nature capacitive du transformateur piézoélectrique (TP), il convient de respecter les règles d’association sources/charge lorsque l’on veut l’insérer dans un convertisseur statique. Dans la plupart des applications, la source d’entrée est un générateur de tension et on ne peut donc l’associer au TP via les interrupteurs commandés qu’à trois conditions :
-
soit en respectant...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mise en œuvre dans les convertisseurs statiques
BIBLIOGRAPHIE
-
(1) - BAKER (E.M.), HUANG (W.), CHEN (D.), LEE (F.C.) - Radial mode piezoelectric transformer design for fluorescent lamp ballast applications. - IEEE PESC 2002 Conference, Queensland, Australia (2002).
-
(2) - BOVE (T.), WOLNY (W.), RINGGAARD (E.), BREBOEL (K.) - Proceedings of ISAF’2000 - (2000).
-
(3) - CARSEN (B.) - Design techniques for transformer active reset circuit at high frequency and power level. - International High Frequency Power conversion Conference, p. 235-246 (1990).
-
(4) - IKEDA (T.) - Fundamentals of piezoelectricity. - Oxford science publication (1996).
-
(5) - IMORI (M.), TANIGUCHI (T.), MATSUMOTO (H.), SAKAI (T.) - A high voltage supply using a piezo ceramic transformer. - Nuclear science symposium 95, p. 118-121 (1995).
-
(6) - IMORI (M.), TAIGUCHI (T.), MATSUMOTO...
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Fabricants de matériaux et/ou de dispositifs piézoélectriques (liste non exhaustive)
Ferroperm Piezoceramics : https://www.ferropermpiezoceramics.com/
Fuji Ceramics corporation : https://www.fujicera.co.jp/en/
Morgan Electro Ceramics (MEC) : https://www.morgantechnicalceramics.com/en-gb/
Murata Manufacturing Co., Ltd : https://www.murata.com/en-global/products/sound
Piezo Systems, Inc. : https://piezo.com/
Polytec-PI : https://www.pifrance.fr/fr/expertise/technologie/technologie-piezo/materiaux-piezoelectriques/
HAUT DE PAGECet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive