Présentation
En anglaisRÉSUMÉ
L'article propose tout d'abord une initiation à la théorie des lignes de transmission. Est abordé ensuite le calcul des paramètres primaires d'une ligne, ainsi que l'analyse de la propagation TEM. Il s'intéresse ensuite à la résolution de l'équation d'onde appliquée aux ondes stationnaires entretenues par des signaux sinusoïdaux, puis traite la question des dissipations d'énergie et l'usage de théories spécifiques au calcul de la réponse transitoire d'une ligne et de sa caractérisation physique en termes de paramètres S.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article organized about five main sections deals with a simple approach of the transmission line theory. Section one introduces the per unit length parameters of the line and the TEM wave concept. Sections two and three describe the wave equation and the solutions expressed in terms of standing waves generated under a steady sine wave excitation. Sections four and five insert the power losses and the description of other theoretical approaches leading to the computation of the line transient response and its physical characterization according to the usual S parameters matrix.
Auteur(s)
-
Bernard DÉMOULIN : Professeur émérite - Université Lille 1, Groupe Telice de l'IEMN, UMR CNRS 8520
INTRODUCTION
L'évolution des technologies électroniques et des procédés de télécommunications apporte aujourd'hui un regard nouveau sur la théorie des lignes de transmission. Deux exemples empruntés à des échelles géométriques volontairement opposées révèlent tout à fait bien le contexte.
Commençons par les circuits élaborant des signaux logiques sous des temps de transit s'approchant de la picoseconde. Il est maintenant bien établi que la conception de ces circuits ne peut être efficacement maîtrisée qu'en faisant intervenir les phénomènes de propagation. Dans ce cas, les mécanismes de propagation agissent principalement sur l'intégrité des signaux transportés sur des connexions de dimensions minuscules. Bien que réalisable sous l'assistance de simulations produites par logiciel, le travail d'analyse exige accessoirement un effort d'interprétation physique facilité par la théorie des lignes.
À l'autre extrémité se situent les télécommunications à courants porteurs. Ces systèmes plus connus sous l'acronyme anglais de PLC (Power Line Communications) risquent d'apparaître à brève échéance sur les réseaux d'énergie électrique de bâtiments et de véhicules les plus divers. Comme précédemment, l'usage d'outils de simulations, aussi perfectionnés soient-ils, demande fréquemment un niveau élémentaire de compréhension physique assez bien restitué par la théorie, telle que décrite et développée dans l'article.
Il est certain que d'autres extensions de l'usage de la théorie des lignes sont envisageables, notamment, pour les études de compatibilité électromagnétique ou d'autres domaines des sciences appliquées dans lesquels se propagent des signaux selon une seule dimension de l'espace.
L'article, structuré en cinq sections, a donc pour vocation première de fournir au lecteur les rudiments de la théorie des lignes. L'approche rudimentaire n'exclut cependant pas l'outil mathématique. Nous verrons à maintes reprises que l'examen et l'analyse des équations facilitent considérablement la compréhension de subtilités physiques. Au descriptif de l'article brièvement résumé ci-après, il convient de préciser que l'analyse est présentement restreinte à des sources de signaux et à des charges aux comportements linéaires.
La première section consacrée aux bases physiques accordera une place importante aux questions de terminologie et de positionnement du sujet par rapport aux théories classiques de l'électrocinétique et de l'électromagnétisme.
La deuxième section portera principalement sur la mise en place de l'équation d'onde et de solutions analytiques relatant les phénomènes de propagation engendrés sur une ligne. Nous verrons à cette occasion le rôle majeur dévolu à la dimension longitudinale de la ligne, à la longueur d'onde, ainsi qu'à l'impédance caractéristique.
La troisième section aborde le problème de la génération des ondes stationnaires. Ces phénomènes rencontrés sur des lignes soumises à des signaux sinusoïdaux entretenus seront comme précédemment relatés par l'outil analytique. Des investigations également inspirées d'exemples permettront de différencier plusieurs classes de fonctionnement des lignes.
La quatrième section traite la question des dissipations d'énergie introduites dans les conducteurs composant la ligne, ainsi que la matière diélectrique utilisée pour leur isolement. Le calcul de la constante de propagation complexe sera entrepris dans sa formulation la plus générale, puis simplifié pour l'usage conventionnel. Les simplifications aboutiront au calcul de l'atténuation d'une ligne engendrée par la seule contribution de la résistance haute fréquence des conducteurs.
La cinquième section, la plus volumineuse de l'article, aborde la théorie des lignes sous d'autres formalismes que ceux examinés dans les paragraphes précédents. Dans l'ordre chronologique seront ainsi exposés, le formalisme de l'impédance d'entrée, le formalisme matriciel, le formalisme symbolique puis le formalisme des paramètres S.
La section consacrée au formalisme symbolique appliqué au calcul de la réponse transitoire d'une ligne paraîtra probablement plus ardu que d'autres parties de l'article. Cet aspect de la théorie des lignes était toutefois incontournable pour dissocier avec réalisme physique les régimes transitoires du régime entretenu, car par tradition, cet aspect est souvent occulté !
La lecture de l'article n'exige pas de connaissances préalables approfondies, hormis quelques bases sur l'électromagnétisme et la théorie des circuits. En l'absence de ces notions minimales, le lecteur trouverait alors avantage à consulter les articles [E 1 020] et [E 104].
MOTS-CLÉS
ligne de transmission équation d'onde impédance caractéristique phénomène de propagation paramètres S télécommunications Ingénierie électronique mesures transmission de données
KEYWORDS
transmission line | wave equation | characteristic impedance | propagation phenomena | S parameters | telecommunications | Electronic engineering | measurements | data transmission
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Conclusion
Pour compléter cet article consacré aux éléments de théorie des lignes, il paraît intéressant d'énoncer en conclusion quatre problèmes académiques venant étendre et approfondir la portée des formalismes précédents.
Le premier problème concerne le traitement des lignes de transmission reliées à des charges aux comportements non linéaires. Il faut savoir que la difficile question du fonctionnement non linéaire peut être assez bien élucidée par le calcul des courants et tensions développés sur une ligne chargée par une diode ou par une résistance variant cycliquement dans le temps. Dans la première configuration, on tente d'évaluer les conditions de résonance de la ligne soumise à des signaux harmoniques. Dans la seconde, on recherche le spectre des courants et tensions de la ligne alimentée par une source de tension continue. Ce problème académique, en apparence simple, est en relation avec les perturbations électromagnétiques produites par des convertisseurs d'énergie sur les réseaux d'énergie. Le problème intéresse également le comportement des diodes de protection des circuits intégrés exposées à des interférences induites par des signaux d'ultra haute fréquence.
Dans une toute autre perspective, la propagation des signaux sur des lignes multifilaires constituées de N conducteurs rapportés à une référence commune exige une révision des raisonnements classiques suivis dans l'article. Cette fois, le problème s'adresse à N lignes couplées auxquelles il faut joindre des vecteurs courants et tensions prenant place dans une équation d'onde matricielle ; équation dont les dimensions s'accordent rigoureusement sur la taille N. La résolution fait alors émerger la propagation modale et consécutivement de nouvelles propriétés physiques associées aux lignes couplées.
Le troisième problème, d'un caractère plus formel concerne la résolution des lignes par l'usage de l'impédance d'entrée. Cette méthode peut être encore améliorée par l'adoption d'une transformation homographique aboutissant sur l'abaque de Smith. La conversion graphique du raisonnement, intensément utilisée par les spécialistes des circuits micro-ondes ou plus généralement par les utilisateurs d'analyseurs de réseaux, apporte également un intéressant complément aux approches analytiques usuelles.
Le quatrième...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - SHELKUNOFF (S.A.) - The electromagnetic theory of coaxial transmission lines and cylindrical shields. - Bell Sytems Technical Journal, p. 533-579, oct. 1934.
-
(2) - COLLIN (R.E.) - Field theory of guided waves. - Ed. MacGraw-Hill, New York (1960).
-
(3) - HARRINGTON (R.F.) - Time harmonic electromagnetic fields. - Ed. MacGraw-Hill, New York (1961).
-
(4) - GRIVET (P.) - Physique des lignes de hautes fréquences et d'ultra hautes fréquences. - Tome I Édition Masson (1969).
-
(5) - GABILLARD (R.) - Vibrations et phénomènes de propagation. - Éditions Dunod (1970).
-
(6) - METZGER (G.), VABRE (J.P.) - Électronique des impulsions. - Tome II Éditions Masson (1970).
- ...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive