Présentation

Article

1 - COMPATIBILITÉ ÉLECTROMAGNÉTIQUE DANS LE DOMAINE FERROVIAIRE

2 - SEMICONDUCTEURS DE PUISSANCE

  • 2.1 - Performances des composants utilisés
  • 2.2 - Techniques de refroidissement

3 - CONVERTISSEUR D’ENTRÉE SOUS CATÉNAIRE CONTINUE

4 - CONVERTISSEUR D’ENTRÉE SOUS CATÉNAIRE MONOPHASÉE

5 - MOTEUR SYNCHRONE AUTOPILOTÉ

6 - MOTEUR ASYNCHRONE

Article de référence | Réf : D5502 v1

Convertisseur d’entrée sous caténaire continue
Traction électrique ferroviaire - Convertisseurs et moteurs

Auteur(s) : Victor SABATÉ

Date de publication : 10 mai 1998

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Victor SABATÉ : Ingénieur CNAM - Expert électrique à la Direction technique de GEC Alsthom Transport - Intervenant ferroviaire à l’École supérieure des techniques aéronautiques et de construction automobile

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le choix politique de l’augmentation de la vitesse des trains ainsi que celle des performances des trains de marchandises a conduit la SNCF à s’orienter vers l’utilisation des moteurs triphasés – synchrone et asynchrone – à partir de la décennie quatre-vingt.

Ces moteurs se caractérisent par une plus grande puissance massique et volumique que les moteurs à courant continu. Cette démarche s’avère nécessaire, car la masse de l’engin de traction constitue une grandeur critique notamment sur la limitation de la vitesse du train à cause des problèmes de dégradation des voies ferrées.

Depuis la fin de la décennie quatre-vingt, cette motorisation se généralise sur l’ensemble des nouveaux matériels roulants : automotrices de banlieue et de région, motrices TGV et locomotives.

Le moteur synchrone à rotor bobiné n’est pas industriellement intéressant pour équiper les automotrices, car la puissance unitaire des moteurs est de quelques centaines de kilowatts. Au-dessous de 1 MW, le dimensionnement du rotor ne varie pas proportionnellement à la puissance de définition du moteur.

Le pilotage des moteurs triphasés s’effectue au moyen d’onduleurs alimentés depuis :

  • une source de courant continu pour les moteurs synchrone et asynchrone ;

  • une source de tension continue seulement pour le moteur asynchrone.

La SNCF n’a pas choisi l’utilisation du moteur synchrone alimenté depuis une source de tension continue, car la structure de l’onduleur est nettement plus complexe et coûteuse par rapport à celle retenue.

Ce choix de motorisation n’est devenu intéressant que grâce à l’évolution récente et progressive (depuis deux décennies) des semiconducteurs de puissance. L’optimisation de la masse et du volume des équipements embarqués étant un critère essentiel, il est nécessaire de minimiser le nombre de semiconducteurs de puissance et on se situe, fréquemment, à la limite du savoir-faire technologique du moment.

L’alimentation de l’engin de traction depuis la caténaire implique l’adaptation de la tension et/ou du courant d’alimentation des onduleurs triphasés en utilisant des structures de convertisseurs d’entrée plus ou moins complexes. Avant de concevoir la structure et le pilotage des convertisseurs d’entrée, il est important de définir leur compatibilité électromagnétique vis-à-vis de l’environnement ferroviaire et public.

Compte tenu de ces différents aspects techniques, nous abordons cette étude sur les convertisseurs statiques et les moteurs de traction dans l’ordre suivant :

  • compatibilité électromagnétique dans le domaine ferroviaire ;

  • semiconducteurs de puissance ;

  • convertisseurs d’entrée sous caténaire continue et sous caténaire monophasée ;

  • moteur synchrone et moteur asynchrone.

Nota :

L’article «Traction électrique ferroviaire » fait l’objet de plusieurs fascicules :

D 5 501 Dynamique ferroviaire et sous-stations

D 5 502 Convertisseurs et moteurs

D 5 503 Perspectives d’évolution

Les sujets ne sont pas indépendants les uns des autres. Le lecteur devra assez souvent se reporter aux autres fascicules.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d5502


Cet article fait partie de l’offre

Réseaux électriques et applications

(178 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

3. Convertisseur d’entrée sous caténaire continue

En Europe, les trois principales sources d’alimentation continue sont :

  • 750 V (RATP, Angleterre…) ;

  • 1 500 V (SNCF, Hollande…) ;

  • 3 000 V (Belgique, Espagne, Italie…).

Le convertisseur d’entrée des engins de traction alimentés sous caténaire continue est un « hacheur de courant » appelé simplement « hacheur ». Selon la configuration du hacheur, le transfert d’énergie s’effectue de la ligne d’alimentation vers le moteur ou inversement.

3.1 Caractéristiques spécifiques au ferroviaire

Dans le ferroviaire, la spécificité essentielle du hacheur réside dans sa compatibilité électromagnétique avec les circuits de signalisation au sol. Avant d’aborder cet aspect, il est intéressant de présenter une synthèse des configurations rencontrées, sans en décrire le fonctionnement car celui-ci est bien connu.

HAUT DE PAGE

3.1.1 Synthèse des configurations de hacheur

  • La motorisation des engins de traction s’effectue avec des moteurs à courant continu ou des moteurs triphasés, synchrone ou asynchrone, associés à un onduleur :

    • les moteurs à courant continu et les moteurs synchrones sont alimentés en courant imposé ;

    • pour les moteurs asynchrones, on distingue deux modes d’alimentation : courant imposé ou tension imposée.

Lorsque le circuit récepteur est alimenté par une source de courant, la tension moyenne – aux bornes du moteur à courant continu ou de l’ensemble onduleur-moteur triphasé – dépend du point de fonctionnement et elle est toujours inférieure à celle de la caténaire.

Dans ce cas, la configuration du hacheur utilisé est :

  • abaisseur de tension en traction ;

  • élévateur de tension en freinage, par récupération d’énergie à l’alimentation.

Lorsque le circuit récepteur est, par contre, alimenté par une source de tension, l’amplitude de celle-ci – aux bornes de l’ensemble onduleur-moteur triphasé – est indépendante du point...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux électriques et applications

(178 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Convertisseur d’entrée sous caténaire continue
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux électriques et applications

(178 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS