Présentation

Article

1 - ACCUMULATEURS « HAUTE TEMPÉRATURE » À ANODE DE LITHIUM

2 - ACCUMULATEURS (LITHIUM-ALUMINIUM)-SULFURE DE FER

3 - ACCUMULATEUR SODIUM-SOUFRE

4 - ACCUMULATEUR « ZEBRA »

Article de référence | Réf : D3355 v1

Accumulateur « Zebra »
Accumulateurs - Accumulateurs à haute température

Auteur(s) : Jack ROBERT, Jean ALZIEU

Date de publication : 10 août 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article est dédié aux accumulateurs dits à haute température, de conception assez récente : sodium-soufre, anode de lithium, « zebra ». Ces dispositifs nécessitent un maintien en température largement au-dessus de la température ambiante, typiquement dans la fourchette 300 à 400 °C. La présence d’un liquide, soit électrode liquide, soit électrolyte secondaire liquide intercalé entre la céramique et l’électrode solide, est alors nécessaire pour conférer à la céramique  une conductivité ionique suffisante.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jack ROBERT : Professeur émérite à l’université Paris Sud XI

  • Jean ALZIEU : Ingénieur-chercheur à Électricité de France

INTRODUCTION

Les avantages du lithium en tant que matériau d’anode ont été abordés dans la présentation du dossier [D 3 354] « Accumulateurs au lithium ». Ces considérations concernent également le sodium dont le potentiel standard d’électrode est bas (– 2,714 V/ENH, tableau 1 du dossier [D 3 351] « Considérations théoriques ») et la masse volumique faible (0,97  gc m 3 ). Enfin, la température de fusion du sodium (98 ˚C) est inférieure à celle du lithium (180,5 ˚C). Il apparaît donc que ces deux métaux sont, a priori, d’intérêt à peu près comparable. La promotion du sodium résulte de la découverte de céramiques inertes vis-à-vis de cet alcalin, autorisant la circulation de l’ion sodium. Ces céramiques sont communément appelées alumine β .

On sait que les métaux alcalins réagissent violemment avec l’eau, si bien que s’impose l’emploi d’électrolytes non aqueux. Deux solutions sont aujourd’hui mises en œuvre, soit un milieu liquide constitué de sels fondus, soit, dans le cas du sodium, un milieu solide du type alumine β. En toutes circonstances, la température de l’accumulateur doit être maintenue largement au-dessus de la température ambiante, typiquement dans la fourchette 300 à 400 ˚C, qu’il s’agisse d’atteindre la zone de fusion des sels ou de conférer à la céramique une conductivité ionique suffisante. Dans ce dernier cas, le contact entre le matériau d’électrode et la céramique impose la présence d’un liquide. Il faut donc soit, un matériau d’électrode liquide, soit un électrolyte « secondaire » liquide intercalé entre la céramique et l’électrode solide. Les accumulateurs réalisés selon ces principes, appelés « accumulateurs (à) haute température », sont de conception récente. Les travaux relatifs à certains d’entre eux n’ont pas été poursuivis devant l’ampleur des difficultés rencontrées.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3355


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

4. Accumulateur « Zebra »

La plupart des difficultés rencontrées sur l’accumulateur sodium-soufre sont apparues au niveau de la cathode. Elles sont dues, pour l’essentiel, au caractère isolant du soufre, à sa volatilité et aux températures de fusion élevées des polysulfures de sodium. Il en est résulté diverses tentatives pour associer au couple sodium liquide-alumine β un matériau actif positif plus pratique d’emploi. La mise en œuvre, vers 210 ˚C, d’un mélange fondu de trichlorure d’antimoine SbCl 3 et de tétrachloroaluminate de sodium NaAlCl4 n’a pas débouché, mais s’est révélée riche d’enseignements. Ces travaux ont conduit à un nouveau type d’accumulateur, constitué d’une anode de sodium liquide, d’un électrolyte primaire d’alumine β, dont l’autre face est mouillée par un mélange de tétrachloroaluminate de sodium à l’état fondu et d’un chlorure de métal de transition insoluble dans NaAlCl 4 fondu. Cet accumulateur est appelé « Zebra ». Il s’agit là d’un acronyme pour Zero Emission Battery Research Activity. L’accumulateur « Zebra » est donc décrit par la formule :

Na(l)| β Al 2 O 3 (s)| NaAlCl 4 (l), MCl 2 (s)

où M désigne un métal de transition.

Les travaux se sont focalisés sur NiCl2 et FeCl 2. Dans le cas de FeCl2, peu onéreux, la fem à vide est 2,35 V. Mais il se forme en surcharge FeCl 3, soluble dans le tétrachloroaluminate de sodium. Le composé NiCl 2, plus cher, conduit à une fem plus élevée, (2,58 V) tandis que les processus électrochimiques sont plus simples. Les premières réalisations impliquaient...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Accumulateur « Zebra »
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  Pour faciliter la recherche des documents cités, les références bibliographiques concernent, pour l’essentiel, le « Journal of power sources » (J. Power Sources), le « Journal of the Electrochemical Society » (J. Electrochem. Soc.) et les actes du Colloque Gaston Planté 2000 (Paris, 30-31 octobre 2000). L’éditeur du « Journal of power sources » est Elsevier (Amsterdam), son adresse électronique est la suivante : http://www.sciencedirect.com/science/ journal/03787753. L’éditeur du « Journal of the Electrochemical Society » est l’« Electrochemical Society » (New York). Le colloque Gaston Planté 2000 a été organisé conjointement par la Société française de chimie (250 rue Saint Jacques, 75005 Paris) et la Société française de thermique. Quelques travaux de thèse sont également cités. Les bibliothèques universitaires détiennent les mémoires originaux.

  • (2) - VINCENT (C.A.), SCROSATI (B.) -   Modern Batteries  -  (Piles et accumulateurs modernes). p. 340 ; 1997 John Wiley and Sons Inc., NY.

  • (3) - LINDEN (D.) -   Handbook of Batteries  -  (Traité sur les piles et accumulateurs). p. 1149 ; 1994 MacGraw Hill Inc., NY.

  • (4) - ATKINS (P.W.) -   Éléments...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS