Présentation
EnglishRÉSUMÉ
Cet article est dédié aux accumulateurs dits à haute température, de conception assez récente : sodium-soufre, anode de lithium, « zebra ». Ces dispositifs nécessitent un maintien en température largement au-dessus de la température ambiante, typiquement dans la fourchette 300 à 400 °C. La présence d’un liquide, soit électrode liquide, soit électrolyte secondaire liquide intercalé entre la céramique et l’électrode solide, est alors nécessaire pour conférer à la céramique une conductivité ionique suffisante.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jack ROBERT : Professeur émérite à l’université Paris Sud XI
-
Jean ALZIEU : Ingénieur-chercheur à Électricité de France
INTRODUCTION
Les avantages du lithium en tant que matériau d’anode ont été abordés dans la présentation du dossier [D 3 354] « Accumulateurs au lithium ». Ces considérations concernent également le sodium dont le potentiel standard d’électrode est bas (– 2,714 V/ENH, tableau 1 du dossier [D 3 351] « Considérations théoriques ») et la masse volumique faible (0,97 ). Enfin, la température de fusion du sodium (98 ˚C) est inférieure à celle du lithium (180,5 ˚C). Il apparaît donc que ces deux métaux sont, a priori, d’intérêt à peu près comparable. La promotion du sodium résulte de la découverte de céramiques inertes vis-à-vis de cet alcalin, autorisant la circulation de l’ion sodium. Ces céramiques sont communément appelées alumine .
On sait que les métaux alcalins réagissent violemment avec l’eau, si bien que s’impose l’emploi d’électrolytes non aqueux. Deux solutions sont aujourd’hui mises en œuvre, soit un milieu liquide constitué de sels fondus, soit, dans le cas du sodium, un milieu solide du type alumine β. En toutes circonstances, la température de l’accumulateur doit être maintenue largement au-dessus de la température ambiante, typiquement dans la fourchette 300 à 400 ˚C, qu’il s’agisse d’atteindre la zone de fusion des sels ou de conférer à la céramique une conductivité ionique suffisante. Dans ce dernier cas, le contact entre le matériau d’électrode et la céramique impose la présence d’un liquide. Il faut donc soit, un matériau d’électrode liquide, soit un électrolyte « secondaire » liquide intercalé entre la céramique et l’électrode solide. Les accumulateurs réalisés selon ces principes, appelés « accumulateurs (à) haute température », sont de conception récente. Les travaux relatifs à certains d’entre eux n’ont pas été poursuivis devant l’ampleur des difficultés rencontrées.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Accumulateur sodium-soufre
La figure 2 est un schéma de principe de l’accumulateur sodium-soufre. Les deux électrodes séparées par une paroi d’alumine β sont respectivement constituées de soufre et de sodium à l’état fondu. Le caractère isolant du soufre impose de munir le compartiment positif d’un feutre de carbone afin d’assurer la collection du courant.
3.1 Alumine
L’alumine β, qui constitue l’électrolyte solide, est un composé cristallin d’alumine Al 2O3 et d’oxyde de sodium Na2O. Deux formes de ce système, de formules respectives Na 2O–11Al2O3 (« alumine β ») et Na 2O–5,33Al2O3 (« alumine β’’ »), sont individuellement mises en œuvre dans les accumulateurs sodium-soufre. Dans la pratique, la première de ces phases contient un excès de Na 2O et la seconde un ajout de MgO ou Li2O, qui la stabilise. La structure de ces matériaux est précisée sur les figures 3 (la figure 3 a est largement schématisée tandis que la figure 3 b est une représentation en perspective). Sur la figure 3 a , le plan central, normal au plan de figure, est constitué par un agencement peu dense d’ions Na + et O2–. Dans la structure complète (figure 3 b ), ces plans sont séparés par une distance de 1,13 nm par des assemblages denses d’ions oxygène et aluminium de type spinelle (représentés par des rectangles sur la figure 3 a ). Du point de vue structural, ces plans constituent des plans miroirs pour les blocs spinelles situés de part et d’autre. Ces blocs sont séparés par des ponts oxygène de longueur 0,48 nm. De façon plus précise, on a, sur la figure 3 b , limité par des tirets les couches denses d’oxygène. C’est entre une telle couche dense et son image par le plan miroir...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Accumulateur sodium-soufre
BIBLIOGRAPHIE
-
(1) - * - Pour faciliter la recherche des documents cités, les références bibliographiques concernent, pour l’essentiel, le « Journal of power sources » (J. Power Sources), le « Journal of the Electrochemical Society » (J. Electrochem. Soc.) et les actes du Colloque Gaston Planté 2000 (Paris, 30-31 octobre 2000). L’éditeur du « Journal of power sources » est Elsevier (Amsterdam), son adresse électronique est la suivante : http://www.sciencedirect.com/science/ journal/03787753. L’éditeur du « Journal of the Electrochemical Society » est l’« Electrochemical Society » (New York). Le colloque Gaston Planté 2000 a été organisé conjointement par la Société française de chimie (250 rue Saint Jacques, 75005 Paris) et la Société française de thermique. Quelques travaux de thèse sont également cités. Les bibliothèques universitaires détiennent les mémoires originaux.
-
(2) - VINCENT (C.A.), SCROSATI (B.) - Modern Batteries - (Piles et accumulateurs modernes). p. 340 ; 1997 John Wiley and Sons Inc., NY.
-
(3) - LINDEN (D.) - Handbook of Batteries - (Traité sur les piles et accumulateurs). p. 1149 ; 1994 MacGraw Hill Inc., NY.
-
(4) - ATKINS (P.W.) - Éléments...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive