Présentation
RÉSUMÉ
La « détection radar » est la capacité du radar à déceler la présence d'échos de cible dans un milieu perturbé par la présence de bruits, et à localiser ces cibles. Les notions de bases nécessaires à la quantification du bruit et du signal utile sont abordées. Elles constituent les bases théoriques strictement nécessaires et sont appliquées ici à l'étude du filtrage optimal d'un récepteur radar et à "l'équation du radar" en espace libre et en milieu brouilleur. Les radars de poursuite, avec un fonctionnement spécifique, permettent une localisation très précise des cibles radar grâce à des procédés particuliers de mesure de la distance et des angles.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jacques DARRICAU : Ingénieur général de l'armement - Ingénieur ENICA et ENSAÉ
INTRODUCTION
Cet article concerne l'ensemble des phénomènes mis en jeu par la « détection radar », c'est-à-dire la capacité du radar à déceler la présence d'échos de cible dans un milieu perturbé par la présence de bruits, et à localiser ces cibles.
Il aborde, dans un premier temps, les notions de bases nécessaires à la quantification du bruit et du signal utile.
Pour ce qui concerne le bruit, sont abordées les notions de :
-
gain et bande passante d'un récepteur ;
-
température additionnelle de bruit ;
-
température de bruit et facteur de bruit d'une chaine de réception ;
-
caractéristiques fréquentielles et filtrage.
Pour ce qui concerne le signal utile, sont abordées les notions de :
-
expression mathématique du signal ;
-
expression temporelle des puissances et énergie ;
-
représentation vectorielle et complexe du signal ;
-
notion de signal complexe équivalent ;
-
spectre et filtrage, à partir d'une approche physique de la transformée de Fourier ;
-
examen de spectres typiques de signaux avec et sans porteuse ;
-
calcul spectral des puissances et énergie des signaux.
Ces notions simples constituent les bases théoriques strictement nécessaires à l'étude des performances des récepteurs radar, telle qu'elle sera abordée dans les articles « Détection des mobiles dans le clutter » et « Traitements avancés du signal radar », qui prendront la suite du présent article.
Ici, elles sont directement appliquées à l'étude du filtrage optimal d'un récepteur radar qui aborde successivement :
-
la problématique de la réception radar en présence de bruit ;
-
la recherche d'un filtre résolvant cette problématique et ses performances en terme de rapport signal sur bruit après filtrage.
Cela conduira à l'expression de « l'équation du radar » en étapes successives :
-
établissement de l'équation de propagation du signal entre le radar et l'objet à détecter ;
-
application de la notion de filtrage adapté à la détection en présence de bruit ;
-
équation du radar sur une cible silencieuse et brouilleuse ;
-
équation du radar en milieu brouilleur.
Est ensuite abordé l'aspect probabiliste de la détection radar, ce qui conduira à établir : des relations entre le rapport signal sur bruit à la sortie du récepteur, la probabilité de fausse alarme due au bruit résiduel et la probabilité de détection de la cible. Cela en exposant :
-
un rappel des notions de probabilité nécessaires à cette étude ;
-
l'étude du comportement aléatoire du bruit, conduisant à la fausse alarme ;
-
l'étude de divers comportements du signal et des traitements associés, conduisant à sa détection.
Ces études, centrées sur la présentation des phénomènes physiques, sont illustrées par de nombreux graphiques illustrant les phénomènes eux-mêmes, et les résultats obtenus. Elles sont complétées par un exposé pratique concernant le comportement des ondes dans le milieu naturel.
Enfin, est abordé le domaine particulier des radars de poursuite, qui permettent une localisation très précise des cibles radar grâce à des procédés particuliers :
-
de poursuite distance ;
-
de poursuite angulaire par « scanning » ;
-
de poursuite angulaire par « monopulse » ;
en examinant dans chaque cas :
-
le principe de base du procédé,
-
le détail de la génération du signal d'erreur, conduisant à chiffrer la précision obtenue.
-
Des schémas synoptiques des radars de poursuite à « scanning » et « monopulse » illustrent l'organisation générale de ces radars.
MOTS-CLÉS
signal radar filtrage adapté probabilité de détection précision de localisation détection localisation électronique électromagnétisme
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Technologies radars et applications > Systèmes radars > Radars : principes de base - Paramètres de détection > Radars de poursuite
Accueil > Ressources documentaires > Technologies de l'information > Le traitement du signal et ses applications > Radiolocalisation > Radars : principes de base - Paramètres de détection > Radars de poursuite
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Radars de poursuite
8.1 Préliminaire
Un radar de poursuite mesure les coordonnées d'une cible et délivre les informations qui sont utilisées pour déterminer sa trajectoire et, au besoin, prédire sa position future.
Tout ou partie des coordonnées mesurables : distance, site, azimut, fréquence doppler, sont mesurées à cet effet. Presque tous les radars peuvent être considérés comme des radars de poursuite si les informations qu'ils délivrent sont traitées aux fins d'établissement de pistes. On désigne néanmoins sous le nom de radars de poursuite, ceux qui peuvent effectuer cette opération en temps réel et avec une précision suffisante. Ce qui, comme nous le verrons par la suite, entraîne des procédés particuliers de mesures, tant des angles que de la distance.
-
Les radars de poursuite eux-mêmes se divisent en deux catégories :
-
radars de poursuite continue, qui mesurent sans interruption les coordonnées d'une cible (ou d'un faible nombre ) placée dans le champ de leur antenne ;
-
radars de poursuite discontinue (track – while – Scan ), dont les propriétés d'agilité permettent la poursuite simultanée de plusieurs cibles situées dans un domaine d'action relativement étendu. Les informations de trajectoire sont alors obtenues séquentiellement sur chaque cible, au moyen d'une poursuite limitée à des fractions de trajectoires de chacune d'elles.
Ces deux types de radars de poursuite se différencieront par l'agilité de leur aérien (ou du faisceau de cet aérien ) et par les systèmes de traitement de l'information associés au radar.
Par ailleurs, la forme du lobe d'antenne d'un radar de poursuite (lobe fin symétrique ou « pencil beam » ) n'est pas adaptée à la recherche d'une cible dans un grand domaine angulaire.
-
-
Il faut alors déterminer la position initiale de cette cible lors d'une phase préliminaire dite « phase de recherche ou d'acquisition ».
Cette recherche peut s'effectuer par le radar lui-même, dans un cône d'ouverture faible, ou dans une nappe que l'objet à poursuivre est censé devoir traverser, et qui sont explorés par le faisceau de l'aérien du radar, comme par exemple suivant les schémas de la figure 61.
On peut également utiliser un radar d'acquisition,...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Radars de poursuite
BIBLIOGRAPHIE
-
(1) - DARRICAU (J.), BLANCHARD (Y.) - Histoire du radar dans le monde puis en France. - Revue PEGASE et revue de l'électricité et de l'électronique (2003).
-
(2) - DARRICAU (J.) - Physique et théorie du radar. - Sodipe (1994).
-
(3) - BLANCHARD (Y.) - Le radar 1904-2004 – Histoire d'un siècle d'innovations techniques et opérationnelles. - Ellipses, Thales (2004).
-
(4) - BARTON (D.K.) - Radar system analysis. - Artech House.
-
(5) - CARPENTIER (M.H.) - Le Radar. - Collection que sais-je (1987).
-
(6) - CARPENTIER (M.H.) - Radars bases modernes. - Masson Paris, 5e édition (1984).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive