Article de référence | Réf : RE255 v1

Dépôt PEALD modifié pour l’augmentation de la cinétique de croissance de Ta2O5
ALD en microélectronique - Applications, équipements et productivité

Auteur(s) : Mickael GROS-JEAN, Arnaud MANTOUX

Date de publication : 10 nov. 2016

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article est une revue de l’utilisation du dépôt par couches atomiques dans le secteur de la microélectronique, en termes d’élaboration de couches minces et de réalisation de composants. Les applications, la chimie des précurseurs, les mécanismes de croissance ainsi que les différents type de réacteurs (avec ou sans assistance plasma) sont décrits.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

ALD in Microelectronic. Applications, Equipments and Productivity

This article is a review of the use of atomic layer deposition (ALD) in the microelectronics domain for the development of thin films and producing components. Applications, chemical precursors, growth mechanisms and reactor types (with or without plasma assistance) are described.

Auteur(s)

  • Mickael GROS-JEAN : Ingénieur Recherche et Développement - STMicroelectronics, Crolles, France

  • Arnaud MANTOUX : Enseignant chercheur - Laboratoire de Science et Ingénierie des Matériaux et Procédés (SIMaP) - Grenoble-INP, CNRS, Université Grenoble Alpes, Grenoble, France

INTRODUCTION

L’ALD est arrivée assez tardivement en microélectronique avec une introduction dans les unités de fabrication de circuits intégrés qui date du début des années 2000. Le principal atout de l’ALD est sa capacité à fabriquer des films très minces avec un excellent contrôle de leur épaisseur, de leur composition chimique et de leur microstructure, que ce soit sur des surfaces planes ou sur des topographies complexes. De plus, de par son principe de saturation de surface, l’ALD n’est pas sensible à la consommation locale, comme c’est le cas avec la technique CVD qui peut conduire à des différences d’épaisseur déposée suivant la densité de motifs. Enfin, la température de dépôt est en général plus faible qu’en CVD, souvent bien inférieure à 400 °C, ce qui la rend compatible avec des empilements sous-jacents fragiles.

Dans cet article sont présentées les différentes applications de l’ALD dans le milieu de la microélectronique, par ordre chronologique d’introduction dans les unités de production. Les divers types d’équipements utilisés sont ensuite décrits, avec une présentation des différentes solutions permettant d’améliorer la rentabilité des procédés, paramètre aujourd’hui capital pour cette industrie devenue mature.

Points clés

Domaine : ALD, couches minces, microélectronique

Degré de diffusion de la technologie : Croissance

Technologies impliquées : Couches minces en microélectronique

Domaines d’application : Microélectronique

Principaux acteurs français :

  • Centres de compétence : CEA – Leti

  • Industriel : STMicroelectronics

Autres acteurs dans le monde : Intel, Samsung, TSMC, Micron, Imec, Infineon, NXP

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

DRAM memories   |   MIM capacities   |   HKMG transistors   |   PEALD process

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re255


Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

8. Dépôt PEALD modifié pour l’augmentation de la cinétique de croissance de Ta2O5

Comme nous l’avons vu, la technique PEALD permet d’obtenir une vitesse de dépôt plus importante que l’ALD classique. De plus, il est possible de faire des dépôts par PEALD selon une deuxième méthode qui consiste à envoyer en continu le gaz du plasma (par exemple le dioxygène) et l’argon dans le réacteur (figure 18), et d’alterner des injections de précurseur (dilué dans l’argon) et des pulsations de radiofréquence. Il convient d’utiliser pour cette méthode un précurseur qui ne réagit pas en phase gazeuse avec l’oxygène atomique dans le domaine de températures considéré. L’utilisation d’un flux continu permet d’augmenter l’efficacité de la purge après l’injection de précurseur et l’injection d’oxydant. En effet, dans le cas d’une séquence ALD/PEALD standard (figure 18), la fermeture de la vanne d’injection de réactif suivie de l’ouverture de la vanne de purge peut conduire à une chute momentanée des flux. L’utilisation d’un flux continu permet d’éviter cette phase transitoire et de pousser en permanence les espèces gazeuses vers la chambre de dépôt, puis vers la pompe. Le temps de la deuxième étape peut ainsi être réduit de 20 à 50 %.

L’utilisation d’un flux continu permet une réduction encore plus notable de la purge après oxydation. En effet la durée de vie des radicaux d’oxygène générés par le plasma est typiquement de quelques nanosecondes. Ainsi, dès que le signal RF est coupé, les espèces oxydantes disparaissent pratiquement instantanément, et le précurseur métallique peut de nouveau être injecté. Dans la pratique on attend entre 50 et 100 millisecondes afin de prendre en compte le temps de réponse du système.

Des durées de cycle élémentaire de l’ordre de la seconde ont ainsi pu être obtenues, tout en évitant une réaction en phase gazeuse qui serait issue d’une purge incomplète du réacteur. En effet moins de 20 particules de taille supérieure à 0,15 µm ont été comptées sur une plaque après dépôt d’une couche de quelques dizaines de nanomètres. Ce faible nombre démontre qu’il n’y a pas de nucléation en phase homogène, source de particules solide sur les plaques.

Si l’on sélectionne un précurseur...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Dépôt PEALD modifié pour l’augmentation de la cinétique de croissance de Ta2O5
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BERTHELOT (A.) et al -   *  -  ICMTD proceedings, 127 (2007).

  • (2) - WEINREICH (W.) et al -   *  -  J. Vac. Sci. Technol., A31(1), 01A119 (2013).

  • (3) - HIGASHI (G.S.) et al -   *  -  Appl. Phys. Lett., 55, 1963 (1989).

  • (4) - SOTO (C.) et al -   *  -  J. Vac. Sci. Technol. À, 9, 2686 (1991).

  • (5) - PUURUNEN (R.) et al -   *  -  J. Appl. Phys, 97, 121301 (2005).

  • (6) - X. ZHAO (X.) et al -   *  -  Phys. Rev. B, 65, 075105 (2002).

  • (7) - MIIKKULAINEN (V.) et al -   *  -  J. of Appl. Phys., 113,...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS