Présentation

Article

1 - TYPES DE MATÉRIAUX ET PROBLÉMATIQUES D'UTILISATION/APPLICATION

2 - CARACTÉRISTIQUES SPECTROSCOPIQUES ET DYNAMIQUES – PROCESSUS OPTIQUES MIS EN JEU

3 - TECHNIQUES DE CARACTÉRISATION OPTIQUES ET SPECTROSCOPIQUES CLASSIQUES

4 - MÉCANISMES SPÉCIFIQUES ET TECHNIQUES DE MESURES ASSOCIÉES

5 - CONCLUSION

6 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : E6327 v1

Glossaire – Définitions
Matériaux luminescents : techniques de caractérisation optique et spectroscopique

Auteur(s) : Richard MONCORGÉ

Date de publication : 10 avr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les matériaux luminescents entrent aujourd'hui dans la composition de nombreux dispositifs pour des applications très diverses allant de l'éclairage et la signalisation publique aux lasers ultra-intenses en passant par les télécommunications optiques à haut-débit et l'information quantique. De nombreux articles leur ont donc déjà été consacrés et peuvent être trouvés dans la littérature récente. L'article présent est consacré quant à lui plus spécifiquement aux outils et techniques utilisés pour caractériser leurs propriétés optiques et spectroscopiques, l'accent étant mis, en guise d'illustration, sur ceux qui sont aujourd'hui les plus étudiés, c'est-à-dire les matériaux inorganiques solides dopés par des ions de terres rares ou des ions de transition du groupe du fer.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Richard MONCORGÉ : Professeur à l'université de Caen Basse-Normandie - Docteur ès sciences physiques - ex-Directeur de recherche au CNRS Centre de recherche sur les ions, les matériaux et la photonique (CIMAP), unité mixte de recherche CEA-CNRS-ENSICAEN, université de Caen, France

INTRODUCTION

Les matériaux luminescents font partie aujourd'hui de notre quotidien. Mais qu'il s'agisse d'éclairage, d'affichage ou de signalisation publique, de télécommunications optiques à haut débit ou d'ordinateur quantique, de cellule solaire ou de laser pour applications civiles ou militaires, de nombreuses améliorations doivent être apportées et de nombreux matériaux et systèmes originaux et innovants doivent être encore découverts, à la fois pour augmenter les rendements et abaisser les coûts de fabrication tout en limitant, si ce n'est en réduisant, les risques pour la santé et l'environnement. Pour cela, quantité de laboratoires et d'instituts publics et privés, dans les pays déjà fortement industrialisés mais aussi dans les pays émergents, y consacrent des moyens financiers et humains de plus en plus importants. De nombreux chercheurs physico-chimistes, opticiens, spectroscopiques ou physiciens des lasers doivent être formés pour utiliser quantité de méthodes et de techniques pour caractériser les matériaux qu'ils ont eux-mêmes conçus ou fabriqués ou qu'on leur a fournis pour les intégrer dans les systèmes qu'ils doivent tester. Il s'agit en général de caractérisations chimiques et structurales, de caractérisations thermiques et thermomécaniques et/ou de caractérisations optiques et spectroscopiques.

Plusieurs articles ont déjà été dédiés aux propriétés optiques et spectroscopiques des matériaux luminescents organiques pour les OLED et aux matériaux inorganiques dopés terres rares ou ions de transition pour l'éclairage, les cellules solaires de 3e génération et les lasers. Nous nous intéresserons plus particulièrement dans cet article à cette deuxième catégorie de matériaux luminescents mais surtout du point de vue des méthodes et techniques de caractérisation optiques et spectroscopiques. Le but est de présenter ce qu'on peut trouver comme techniques commerciales mais aussi de décrire le fonctionnement et les caractéristiques des outils utilisés, qu'il s'agisse de sources d'excitation lumineuse, de détecteurs ou de systèmes d'analyse et de traitement du signal. Toutes les méthodes et techniques classiques de caractérisation spectroscopiques (absorption, émission, excitation, temps de vie de fluorescence, rendement quantique) seront passées en revue, en prenant soin chaque fois de détailler les aspects de calibrage et d'exploitation des résultats en fonction des systèmes étudiés.

On verra par exemple comment corriger les spectres de la réponse spectrale des appareils, comment tenir compte de la polarisation dans le cas de cristaux biréfringents, comment éviter les problèmes posés par le piégeage radiatif, comment déterminer des rapports de branchements, comment décrire l'évolution thermique des spectres observés et enfin comment calibrer les spectres en unité de section efficace. Une autre partie sera consacrée quant à elle à des mécanismes et des techniques de mesures plus spécifiques. Seront décrites plus particulièrement les techniques pompe-sonde qui permettent d'enregistrer et de calibrer les spectres d'absorption dans les états excités des ions, les méthodes de caractérisation des spectres d'excitation multi-photons et de luminescence dite « coopérative », et les techniques pompe-sonde pour enregistrer les variations d'indices de réfraction d'origine thermique ou électronique résultant d'un fort pompage optique.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e6327


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

6. Glossaire – Définitions

LASER (Light Amplification by Stimulated Emission of Radiation )

Terme utilisé à l'origine pour faire la distinction avec le MASER (Microwave Amplification of Stimulated Emission of Radiation ) et qui regroupe aujourd'hui tout type d'amplification de lumière cohérente indépendamment du domaine de longueur d'onde considéré, donc des rayons X jusqu'à l'infrarouge (en passant par l'UV, le visible, le proche et moyen infrarouge et le térahertz).

Quantum-dots (points quantiques )

Nanocristaux de 2 à 10 nm composés de quelques 104 à 10semi-conducteurs binaires (ZnS, CdSe, par exemple) arrangés selon un ordre cristallin. Leur excitation lumineuse conduit à la création de paires électron-trou (excitons) ayant les caractéristiques quantiques d'un atome d'hydrogène de rayon de Bohr très grand (5,6 nm pour CdSe, par exemple). La recombinaison électron-trou conduit alors à une émission de photons (pic étroit) d'énergie supérieure à l'énergie de la bande interdite du semi- conducteur considéré, indépendante de l'énergie d'excitation, et à une longueur d'onde d'autant plus courte que la taille de la « boîte » quantique est réduite. On peut donc jouer sur la taille de ces nanocristaux pour obtenir des couleurs d'émission différentes.

Effet Stark (Stark effect )

Action d'un champ électrique sur la structure énergétique d'un ion (éventuellement) luminescent. Le champ électrique agit sur les charges électroniques de l'ion considéré (forces et potentiel électrostatiques) en introduisant en général une dissymétrie qui conduit à une levée de dégénérescence et donc à un éclatement des niveaux de l'ion « libre ». On parle ainsi de niveaux ou de composantes Stark. C'est ce qui se passe lorsqu'un ion luminescent est introduit dans une matrice cristalline et qu'il entre en interaction (champ cristallin) avec les ions « ligands » les plus proches voisins (ions O2– par exemple dans le cas d'un oxyde).

Up-Conversion (conversion vers le haut)

Mécanisme résultant d'un processus d'absorption dans l'état excité ou d'excitation multi-photons à l'intérieur d'un seul ion, ou d'un processus de transfert d'énergie entre deux ions plus ou moins proches, et conduisant à l'émission d'un photon plus énergétique (longueur d'onde plus courte) que le photon excitateur.

Down-Conversion...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire – Définitions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MONCORGÉ (R.), PACHECO (D.), DI BARTOLO (B.) -   Thermal behavior of the shape and width of the 9 145 Å laser line of Nd3+ in CaWO4.  -  Phys, Stat. Sol. (a), 43, p. K45-K48 (1977).

  • (2) - ELLENS (A.), ANDRES (H.), MEIJERINK (A.), BLASSE (G.) -   Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron- phonon coupling strength.  -  Phys. Rev. B, 55(1), p. 173-179 (1997).

  • (3) - DORENBOS (P.) -   Systematic behavior in trivalent lanthanide charge transfer energies.  -  J. Phys. Cond. Matter, 15, p. 8417-8434 (2003).

  • (4) - MONCORGÉ (R.), EREMEYKIN (O.N.), DOUALAN (J.L.), ANTIPOV (O.L.) -   Origin of a thermal refractive index changes observed in Yb3+ doped YAG and KGW.  -  Opt. Comm., 281, p. 2526-2530 (2008).

  • (5) - SOULARD (R.) -   Réseaux d'indice et réseaux de gain dans les milieux lasers solides dopés Nd3+ ou Yb33+ – Utilisation pour le mélange à deux ondes et les cavités laser auto-adaptatives.  -  Thèse...

1 Annuaire

HAUT DE PAGE

1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

Spectromètres d'absorption et spectrofluorimètres : HORIBA-JOBIN-YVON http://www.horiba.com

PERKIN-ELMER http://www.perkinelmer.com/

Lampes spectrales : ORIEL/NEWPORT https://www.newport.com/

Détecteurs : HAMAMATSU http://www.hamamatsu.fr

Oscillateur Paramétrique Optique http://www.continuumlasers.com http://www.quantel-laser.com

HAUT DE PAGE

1.2 Organismes – Fédérations – Associations (liste non exhaustive)

Réseau CNRS « Cristaux massifs, micro-nano-structures et dispositifs pour l'Optique » (CMDO+) http://www.cmdo.cnrs.fr

HAUT DE PAGE

1.3 Documentation...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS