Présentation
En anglaisRÉSUMÉ
Cet article traite de l’électronique de spin, ou spintronique, basée sur l’utilisation non seulement de la charge de l’électron, comme en électronique, mais également de son spin. D’une part, les caractéristiques électriques d’un dispositif dépendent des états d’aimantation des éléments qui le composent, essentiellement via des effets de magnétorésistance. D’autre part, l’injection de courant dans un dispositif peut permettre de contrôler des propriétés magnétiques telles que la direction d’aimantation, via des effets de transfert de spin. Ces propriétés sont à la base du développement des dispositifs spintroniques, en particulier des mémoires et des capteurs.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article deals with spin electronics, or spintronics, which is based not only on the charge of the electron, as in conventional electronics, but also on its spin. On the one hand, the electrical characteristics of a device depend on the magnetization states of its components, mainly via magnetoresistance effects. On the other hand, injecting current into a device allows controlling magnetic properties such as the magnetization direction, via spin transfer effects. These properties are the basis for the development of spintronic devices, in particular memories and sensors.
Auteur(s)
-
Jean-Philippe ATTANÉ : Maître de Conférences - Université Grenoble Alpes, CEA, CNRS, Grenoble INP, Spintec, Grenoble, France
-
Manuel BIBES : Directeur de Recherche - Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
-
Laurent VILA : Ingénieur CEA - Université Grenoble Alpes, CEA, CNRS, Grenoble INP, Spintec, Grenoble, France
INTRODUCTION
Le développement des techniques de dépôt de couches minces et de lithographie a permis de créer des dispositifs électroniques tirant profit non seulement de la charge de l’électron, mais également de son spin, pour obtenir des fonctionnalités nouvelles et supplémentaires. La combinaison dans des structures de dimensions nanométriques de matériaux magnétiques d’une part, et de matériaux métalliques, semi-conducteurs ou isolants d’autre part, a permis l’émergence d’une nouvelle génération de composants ainsi que d’une nouvelle discipline : l’électronique de spin, ou spintronique. Le transport en spin est dépendant de la direction d’aimantation des nanoéléments magnétiques, ce qui génère des effets de magnétorésistance, c’est-à-dire de dépendance de la conductivité avec la direction de l’aimantation et/ou le champ magnétique appliqué. Ces effets permettent notamment de produire des capteurs extrêmement sensibles, en particulier de champ magnétique. De plus, il est possible de développer des dispositifs de stockage ou de manipulation de données, en particulier en exploitant l’état d’aimantation comme variable, et les effets de transfert de spin afin de renverser l’aimantation. Enfin, l’utilisation d’effets spin-orbite permet une manipulation efficace du spin, éventuellement en l’absence de tout élément ferromagnétique.
Dans le présent article, nous présentons les couches minces et les nanostructures utilisées en électronique de spin (§ 1), dans lesquelles apparaissent différents effets : magnétorésistances (§ 2), transfert de spin (§ 3) ou effets spin-orbite (§ 4). Ces effets permettent en particulier de lire et de contrôler l’état d’aimantation, et ainsi de développer des capteurs (§ 5), des mémoires (§ 6) et des dispositifs spintroniques émergents (§ 7).
Le lecteur trouvera en fin d'article un glossaire des termes utilisés.
MOTS-CLÉS
KEYWORDS
sensors | magnetism | spintronics | memories
VERSIONS
- Version archivée 1 de nov. 2002 par Michel HEHN, François MONTAIGNE, Alain SCHUHL
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux magnétiques > Spintronique - Principes et applications de l’électronique de spin > Mémoires spintroniques
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Mémoires spintroniques
La possibilité d’écrire un état magnétique par application de champ ou par transfert de spin, et de le lire par MRT, a permis de développer des technologies mémoire magnétiques, les MRAM (pour Magnetic Random Access Memories) .
Les mémoires étaient hiérarchiquement divisées entre mémoires vives rapides (SRAM et DRAM) et mémoires de stockage lentes comme le disque dur. Les mémoires vives étant volatiles, c’est-à-dire qu’elle ne retiennent l’information que si elles sont alimentées en énergie, un certain nombre de mémoires ont été développées pour essayer de combiner vitesse, endurance et non volatilité. Ces mémoires non volatiles émergentes sont par exemple les mémoires à changement de phase, les mémoires ferroélectriques ou les mémoires résistives. Elles ont le potentiel, si leurs performances (densité, endurance, consommation, vitesse de lecture/écriture, tension de travail, etc.) deviennent concurrentielles, de rivaliser avec la DRAM (voire la SRAM), et possiblement d’être intégrées à l’étage logique CMOS afin de limiter le coût de transfert des données entre les étages mémoires et logiques.
6.1 Field MRAM et toggle MRAM
Les premières MRAM développées ont été les field MRAM, basées sur une écriture par application de champ magnétique. Ces champs sont des champs d’Ampère ou d’Oersted, produits par le courant circulant dans les nanofils à proximité de la couche douce de l’élément mémoire (figure 11).
Une variante de MRAM basée sur une écriture sous champ est la toggle MRAM, commercialisée depuis 2006. Le principe d’écriture est similaire, mais la couche douce est remplacée par deux couches douces couplées antiferromagnétiquement.
HAUT DE PAGE...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mémoires spintroniques
BIBLIOGRAPHIE
-
(1) - SESHAN (K.), SCHEPIS (D.) et al - Handbook of thin film deposition. - William Andrew (2018).
-
(2) - CUI (Z.) - Nanofabrication : principles, capabilities and limits. - Springer (2016).
-
(3) - GUIMARÃES (A.P.), GUIMARAES (A.P.) - Principles of nanomagnetism. - Berlin : Springer (2009).
-
(4) - COEY (J.) - Magnetism and magnetic materials. - Cambridge university press (2010).
-
(5) - DE TERESA (J.M.) et al - Nanofabrication : Nanolithography Techniques and Their Applications. - IOP Publishing (2020).
-
(6) - e. g. PONG (P.W.T.), DENNIS (C.), CASTILLO (A.) et al - Detection of pinholes in magnetic tunnel junctions by magnetic coupling. - Journal of Applied Physics, vol. 103, n° 7, p. 07A902...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
– MRAM :
Everspin
Avalanche
https://www.avalanche-technology.com/
Samsung
Honeywell
https://aerospace.honeywell.com/
– Capteurs magnétiques :
Crocus Technology
http://www.crocus-technology.com/
– SOT-MRAM :
Antaios
– Testeurs MRAM :
Hprobe
HAUT DE PAGE1.2 Organismes – Fédérations – Associations (liste non exhaustive)
Association Européenne du Magnétisme (European Magnetism Association EMA)
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive