Présentation

Article

1 - MILIEU CRISTALLIN

2 - RÉSEAUX DE POINTS

3 - SYMÉTRIE D’ORIENTATION

4 - SYMÉTRIE DE POSITION

Article de référence | Réf : A1305 v1

Symétrie d’orientation
Cristallographie géométrique

Auteur(s) : André AUTHIER

Date de publication : 10 nov. 1993

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • André AUTHIER : Ancien Élève de l’École Normale Supérieure - Professeur à l’Université Pierre-et-Marie-Curie (Paris VI)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La cristallographie est la branche de la science qui concerne la description et la compréhension de la structure et des propriétés de la matière condensée en fonction de la distribution spatiale des atomes et des forces interatomiques dans un assemblage étendu.

Helen Megaw (1965).

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-a1305


Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

3. Symétrie d’orientation

3.1 Opérations de symétrie d’orientation

La symétrie d’orientation, qui traduit les propriétés de symétrie macroscopique d’un milieu homogène, a été définie, ainsi que les groupes ponctuels 1.3.3.3. Toutes les propriétés du cristal sont invariantes sous l’action des éléments de symétrie du groupe, en particulier le réseau. Les éléments constitutifs des groupes cristallographiques doivent donc être compatibles avec la périodicité du réseau : les axes de rotation ne peuvent être que d’ordre 1, 2, 3, 4 ou 6 (§ 2.4 a ).

Les éléments de symétrie d’orientation sont des isométries. On peut les classer en deux catégories.

HAUT DE PAGE

3.1.1 Symétrie directe. Symétrie inverse

  • Éléments de symétrie directe ou éléments propres (type I ) : ce sont ceux qui transforment un objet en un objet qui lui est superposable ; ils sont représentés, en axes orthonormés, par une matrice S :

    S=[cos αsin α0sin αcos α0001]
    ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Symétrie d’orientation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CURIEN (H.) -   Les groupes en cristallographie.  -  Dans Théorie des groupes en physique classique et quantique (T. Kahan), vol. 2, p. 49-144, Dunod (1971).

  • (2) - DUCROS (P.) -   Radiocristallographie.  -  Dunod (1971).

  • (3) - ENGEL (P.) -   Geometric Crystallography.  -  D. Reidel, Dordrecht (Pays-Bas) (1987).

  • (4) - FRIEDEL (G.) -   Leçons de cristallographie.  -  Berger-Levrault (1926).

  • (5) - GAY (R.) -   Cours de Cristallographie.  -  Gauthiers Villars (1958).

  • (6) - GUINIER (A.) -   Théorie et technique de la radiocristallographie.  -  Dunod (1956).

  • (7) - HOCART (R.) -   Les...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS