Présentation

Article

1 - PRÉLIMINAIRES

2 - MÉTHODE DE CALCUL

3 - RÉFLEXION, TRANSMISSION, ABSORPTION

4 - CODAGE NUMÉRIQUE

5 - PREMIERS EXEMPLES NUMÉRIQUES

6 - RÉFLEXION TOTALE, RÉSONANCES ET MODES DE PROPAGATION

7 - LIEN AVEC L'OPTIQUE PLANAIRE

Article de référence | Réf : AF3348 v1

Méthode de calcul
Couches minces optiques et filtrage interférentiel - Champs et multicouches, synthèse, résonances et modes...

Auteur(s) : Claude AMRA, Catherine GRÈZES-BESSET

Date de publication : 10 janv. 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Ces dernières années, les fonctions optiques, réalisées dans de nombreux secteurs, se sont multipliées et complexifiées, nécessitant l'emploi incontournable des couches minces optiques. Diversité des substrats et des matériaux déposés, la technologique a énormément progressé, rendant possible maintenant le dépôt de plusieurs centaines de couches avec une précision nanométrique. Des méthodes permettent de calculer la réponse optique d'un système multicouche et d'accéder aux paramètres de réflexion, transmission et absorption, front d'onde et polarisation, durée d'impulsion. La méthode des admittances complexes offre l'avantage du calcul analytique dans la prédiction de ces phénomènes. La programmation rapide du profil spectral d'un composant  est non seulement rendue accessible, mais généralisable à l'étude des résonances et modes guidés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Dans le domaine de l'espace libre, les couches minces optiques demeurent incontournables dans de nombreux secteurs. Ce constat résulte d'une maturité acquise au cours des trente dernières années, et de la diversité et la complexité des fonctions optiques réalisées : respect de contraintes simultanées sur l'intensité et la phase, la polarisation, l'achromaticité ou la résonance, la stabilité à l'incidence... Ce type de composant trouve également sa force dans la diversité des substrats (verres, cristaux, plastiques) et des matériaux déposés (oxydes, sulfures, nitrures, fluorures, métaux), qui lui permettent d'adresser de larges domaines spectraux (UV/VIS/PIR/MIR). Par ailleurs, ce domaine est quasiment le seul à bénéficier de logiciels de synthèse élaborés faisant appel aux techniques d'optimisation les plus récentes (algorithmes génétiques, recuit simulé, méthode des aiguilles...). Si, dans les années 2000, des progrès spectaculaires ont été réalisés dans le domaine de la fabrication de filtres destinés aux applications microélectronique, télécommunications optiques à haut débit et biomédical, la technologie a encore progressé au cours des cinq dernières années, notamment dans le domaine de l'automatisation des procédés, et rend aujourd'hui accessible le dépôt de plusieurs centaines de couches avec une précision nanométrique. Ces progrès ont été accompagnés par une métrologie de plus en plus sophistiquée dont la tenue au flux, qui est devenue un réel verrou dans le contexte d'intégration photonique et d'augmentation de la puissance des sources laser. Parallèlement les contraintes non optiques (dureté, adhésion, sensibilité à l'environnement, vieillissement, auto nettoyage) ont pris une place considérable, notamment dans le domaine des applications grand public.

Cet article est consacré au calcul de la réponse optique d'un système multicouche : réflexion, transmission et absorption, front d'onde et polarisation, durée d'impulsion... Nous utilisons pour cela la méthode des admittances complexes, qui offre l'avantage du calcul analytique pour mieux comprendre et prédire les phénomènes. Les résultats permettent de programmer rapidement le profil spectral d'un composant ; par ailleurs, ils sont immédiatement généralisables à l'étude des résonances et modes guidés.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3348


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

2. Méthode de calcul

2.1 Définition du problème

On se place en régime harmonique ou monochromatique avec une dépendance temporelle en exp (– jωt ). Les milieux sont supposés linéaires, homogènes, isotropes et non magnétiques (μ = μ0). On travaille également en l'absence de charges et courants, sans exclure le cas des métaux (courants photo-induits). Le composant est un système plan multicouche (figure 2) invariant selon Oy. Ce composant est éclairé à partir d'une source située à l'infini dans un superstrat transparent d'indice de réfraction n0 . L'onde incidente est plane progressive et heurte l'échantillon sous l'incidence i0 avec un vecteur d'onde dans le plan y = 0 (angle polaire ψ = 0). La fréquence spatiale est ainsi portée par le vecteur unitaire x :

( 12 )

avec λ la longueur d'onde du rayonnement dans le vide. On utilisera souvent la notion de pulsation spatiale laquelle représente la composante tangentielle du vecteur d'onde.

Le champ électrique incident s'écrit dans le plan complexe, avec la variable d'espace, comme :

( 13 )

avec

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Méthode de calcul
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MacLEOD (H.A.), MacLEOD (A.) -   Thin film optical filters.  -  Taylor and Francis Ed. 3 (2001).

  • (2) - DOBROWOLSKI (J.A.) -   Optical properties of films and coatings.  -  In Handbook of Optics, BASS (M.) et al., McGraw-Hill (1995).

  • (3) - BAUMEISTER (P.W.) -   Optical coating technology.  -  SPIE Press Book (2004).

  • (4) - THELEN (A.) -   Design of optical interference coatings.  -  McGraw-Hill (1989).

  • (5) - FURMAN (S.A.), TIKHONRAROV (A.V.) -   Basics of optics of multilayer systems.  -  Éditions Frontières (1992).

  • (6) - PETIT (R.) -   Ondes électromagnétiques en radio-électricité et en optique.  -  Masson (1992).

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS