Claude AMRA
Directeur de recherche au CNRS, Institut Fresnel
Ces dernières années, les fonctions optiques, réalisées dans de nombreux secteurs, se sont multipliées et complexifiées, nécessitant l'emploi incontournable des couches minces optiques. Diversité des substrats et des matériaux déposés, la technologique a énormément progressé, rendant possible maintenant le dépôt de plusieurs centaines de couches avec une précision nanométrique. Des méthodes permettent de calculer la réponse optique d'un système multicouche et d'accéder aux paramètres de réflexion, transmission et absorption, front d'onde et polarisation, durée d'impulsion. La méthode des admittances complexes offre l'avantage du calcul analytique dans la prédiction de ces phénomènes. La programmation rapide du profil spectral d'un composant est non seulement rendue accessible, mais généralisable à l'étude des résonances et modes guidés.
L’objet de cet article est de fournir des outils théoriques et expérimentaux pour apprendre à utiliser les phénomènes de diffusion lumineuse, peu enseignés à ce jour. Pourtant, la diffusion lumineuse demeure un outil clé, et régit un grand nombre de phénomènes d’optique, dont l’imagerie et la vision. Est proposée une approche perturbatrice caractéristique de milieux aléatoires (surfaces faiblement rugueuses et volumes), responsables d’une diffusion faible devant le flux incident. Les différents cas de diffusion de la lumière sont analysés (paramètres, amplitude de l’onde et intensité) et illustrés d’exemples numériques. Puis les mesures et les applications de la diffusion de la lumière sont abordées à travers une analyse multiéchelle.