Présentation

Article interactif

1 - PRÉAMBULE

2 - ADAPTATION DE LA RÉSISTANCE DE CHARGE

3 - AMÉLIORATION DE LA CONVERSION/DE L’EXTRACTION

4 - VARIANTES ET INTERFACES HYBRIDES

5 - CONCLUSION

6 - GLOSSAIRE

7 - SYMBOLES ET SIGLES

Article de référence | Réf : E3977 v1

Glossaire
Circuits d’interface pour dispositifs piézoélectriques de récupération d’énergie mécanique

Auteur(s) : Mickaël LALLART, Elie LEFEUVRE

Relu et validé le 27 sept. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Récupérer efficacement l’énergie de vibrations mécaniques à l’aide de transducteurs piézoélectriques nécessite la mise en œuvre de circuits d’interface adaptés, associés à des techniques de contrôle spécifiques. Cet article montre l’influence de circuits d’extraction d’énergie élémentaires ou avancés sur la puissance récupérée et la bande passante. Plusieurs familles de circuits d’interface et différentes méthodes de commande sont proposées, permettant, selon les caractéristiques électromécaniques du transducteur, de maximiser la puissance électrique générée ou même d’adapter sa fréquence de résonance pour exploiter les vibrations ambiantes de manière optimale.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Electrical interfaces for piezoelectric mechanical energy harvesting devices

Harvesting efficiently energy from mechanical vibrations requires the use of suitable electrical interfaces behind piezoelectric transducers along with specific control laws. This article devises the effect of elementary or advanced energy extraction circuits on the harvested power or bandwidth. Several kinds of such electrical interfaces and associated control laws are detailed, allowin, the maximization of the generated electrical power or even the adaptation of its resonance frequency according to the electromechanical characteristics of the transducer in order to exploit ambient vibrations in an optimal way.

Auteur(s)

  • Mickaël LALLART : Professeur des Universités - Laboratoire de Génie Électrique et Ferroélectricité, - Institut National des Sciences Appliquées de Lyon, - Villeurbanne, France

  • Elie LEFEUVRE : Professeur des Universités - Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay et CNRS, Palaiseau, France

INTRODUCTION

La récupération d’énergie mécanique ambiante à petite échelle (puissance mise en jeu de l’ordre de quelques dizaines de microwatts à quelques milliwatts) présente un intérêt croissant dans des domaines d’application très variés : industrie, transports (biens, personnes, énergie), domaine médical, grand public, etc. Cet intérêt est lié au développement d’une grande variété de dispositifs électroniques autonomes, qui sont pour la plupart alimentés par des piles ou des batteries rechargeables. L’énergie mécanique est présente dans la plupart des environnements, sous différentes formes et avec différentes caractéristiques. Capter et convertir cette énergie mécanique ambiante en électricité peut permettre d’augmenter la durée de vie des piles, d’espacer la recharge des batteries, voire même de se passer de stockage d’énergie dans certains cas.

Plusieurs technologies de conversion d’énergie mécanique en électricité peuvent être considérées pour ce type d’applications. Les plus classiques reposent sur les principes de transduction magnétodynamique, piézoélectrique et électrostatique. Cet article s’intéresse spécifiquement à la transduction piézoélectrique, qui présente de nombreux avantages pour la récupération d’énergie des vibrations mécaniques ambiantes à petite échelle : simplicité de mise en œuvre, compacité, densité d’énergie élevée, rendement élevé dans une large gamme de fréquence. Le développement de systèmes de récupération d’énergie compacts et efficaces utilisant des transducteurs piézoélectriques nécessite toutefois des circuits d’interface adaptés. Du point de vue électrique, un transducteur piézoélectrique ne se comporte pas comme un générateur de tension ou de courant idéal, mais comme un générateur avec une impédance interne dont le module et la phase varient assez fortement. En outre, l’amplitude des grandeurs électriques générées par effet piézoélectrique dépend des vibrations ambiantes et peut également varier dans de larges proportions. Pour toutes ces raisons, l’extraction optimale de l’énergie électrique générée par transduction piézoélectrique nécessite des circuits d’interface adaptés et des principes de commande spécifiques, qui sont exposés dans cet article.

Malgré un rendement de conversion élevé, le couplage électromécanique d’un dispositif piézoélectrique de récupération d’énergie peut s’avérer relativement faible suivant les matériaux utilisés et la structure mécanique mise en œuvre. Dans ce cas, des circuits d’interface spécifiques sont proposés pour augmenter très significativement le niveau de la puissance électrique récupérée. Du point de vue énergétique, l’effet de ces circuits est assimilable soit à une amélioration des propriétés de transduction électromécanique du dispositif piézoélectrique, soit à une meilleure maîtrise des échanges d’énergie (dont la partie réactive). Dans le cas de résonateurs piézoélectriques à fort couplage électromécanique, certains de ces circuits d’interface permettent d’optimiser la puissance tout en offrant la possibilité de modifier la fréquence de résonance des systèmes de récupération d’énergie. Ce degré de liberté supplémentaire offre ainsi une meilleure adaptabilité aux variations de fréquence et d’amplitude des vibrations mécaniques ambiantes.

Les méthodes d’extraction d’énergie présentées dans cet article soulignent le rôle fondamental du circuit d’interface sur le fonctionnement global du système de récupération d’énergie. Elles visent à éclairer les choix concernant les circuits d’interface, de manière à aider au développement de systèmes de récupération d’énergie performants. Cet article contribue ainsi à relever les défis techniques, économiques et environnementaux rencontrés dans le développement des dispositifs électroniques autonomes.

Le lecteur trouvera en fin d'article un glossaire et un tableau des symboles et des sigles utilisés.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

piezoelectricity   |   energy harvesting   |   electrical interfaces   |   converters

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e3977


Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

6. Glossaire

microgénérateur :

Terme désignant ici la partie électromécanique du système de récupération d’énergie, c’est-à-dire la partie mécanique et le transducteur piézoélectrique.

régime harmonique :

Terme désignant un mode de fonctionnement dans lequel la vibration mécanique appliquée au microgénérateur est purement sinusoïdale, ou monochromatique.

résonance :

Phénomène de résonance permettant dans le cas des microgénérateurs piézoélectriques d’augmenter la puissance électrique générée. À la résonance, la puissance électrique est proportionnelle au facteur de qualité mécanique global du microgénérateur.

transducteur :

Terme désignant l’élément piézoélectrique utilisé pour effectuer la conversion d’énergie mécanique en énergie électrique.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LEFEUVRE (E.), SEBALD (G.), GUYOMAR (D.), LALLART (M.), RICHARD (C.) -   Materials, structures and power interfaces for efficient piezoelectric energy harvesting.  -  J. Electroceram., vol. 22, p. 171-179 (2009).

  • (2) - TILMANS (H.A.C.) -   Equivalent circuit representation of electromechanical transducers : I. Lumped-parameter systems.  -  J. Micromech. Microeng., vol. 6, n° 1, p. 157-176 (1996).

  • (3) - ERTURK (A.), HOFFMANN (J.), INMAN (D.J.) -   A piezomagnetoelastic structure for broadband vibration energy harvesting.  -  Appl. Phys. Lett., vol. 94, p. 254102 (2009).

  • (4) - HUGUET (T.), BADEL (A.), DRUET (O.), LALLART (M.) -   Drastic bandwidth enhancement of bistable energy harvesters : Study of subharmonic behaviors and their stability robustness.  -  Applied Energy, vol. 226, p. 607-617 (2018).

  • (5) - WANG (Y.C.), HUANG (T.W.), SHU (Y.C.), LIN (S.C.), WU (W.J.) -   Nonlinear Modeling of MEMS Piezoelectric Energy Harvesters. SPIE 23th International Symposium on Smart Structures and Material Systems.  -  Las...

ANNEXES

  1. 1 Événements

    1 Événements

    La conférence annuelle JNRSE (Journées Nationales sur la Récupération et le Stockage de l’Energie) rassemble chercheurs et experts en conversion, récupération et stockage de l'énergie à échelle réduite, ainsi qu’en conception de systèmes complets énergétiquement autonomes.

     

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 92% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Électronique

    (227 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS

    Sommaire

    QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

    1/ Quiz d'entraînement

    Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

    2/ Test de validation

    Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

    Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Électronique

    (227 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS