Présentation
EnglishRÉSUMÉ
L'imagerie infrarouge a connu une véritable révolution avec le développement et la mise à disposition du marché civil de matrices de détection infrarouge non refroidies, jusque-là réservée aux domaines militaire, spatial et civil de haut de gamme. Le développement des technologies de la microélectronique sur silicium a permis la réalisation de matrices de détection non refroidies de plus en plus performantes, à des prix de revient bien inférieurs à ceux accessibles aux détecteurs refroidis. Ces progrès ont ouvert la voie à l'imagerie infrarouge pour le civil et à l'accroissement des quantités pour le militaire. Les principes de base de la détection infrarouge en non refroidi, ainsi que la fabrication de ces détecteurs sont décrits, et leur utilisation dans une caméra est abordée.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Luc TISSOT : Directeur technique et directeur de la division marketing, ULIS
INTRODUCTION
L'imagerie infrarouge a connu depuis le début des années 1990 une véritable révolution avec le développement et la mise à disposition du marché civil de matrices de détection infrarouge non refroidies. Jusque là, l'utilisation de l'imagerie infrarouge était réservée aux domaines militaire, spatial et civil de haut de gamme. En effet, les seuls détecteurs disponibles étaient basés sur une détection de type quantique qui nécessite un matériau semi-conducteur dont la largeur de bande interdite est adaptée à la longueur d'onde à détecter comme l'est le silicium pour la détection dans le domaine du visible. Dans le cas de l'infrarouge, les énergies à détecter sont plus faibles (environ 0,1 eV pour la bande spectrale centrée à une longueur d'onde de 10 µm) et donc la bande interdite du matériau semi-conducteur doit être de 0,1 eV ou 100 meV. Cette faible énergie fait qu'à la température ambiante le courant photonique généré dans la structure de détection (photodiode) est complètement masqué par le courant thermique. La seule solution est alors de recourir au refroidissement du photodétecteur pour diminuer le courant d'origine thermique jusqu'à une valeur qui permet la lecture du courant photonique. Ces contraintes (matériau semi-conducteur de faible largeur de bande interdite et machine de refroidissement) font que les détecteurs infrarouges de type quantique sont chers à développer et à produire et chers à utiliser.
En revanche, la détection thermique, basée sur la mesure de l'élévation de température d'un matériau absorbant le flux infrarouge incident, ne nécessite plus de refroidissement pour fonctionner. La difficulté est alors d'intégrer les fonctions nécessaires à ce type de détection dans des pixels suffisamment petits pour réaliser des rétines à deux dimensions de taille raisonnable, adaptées aux applications d'imagerie. Ce sont les développements des technologies de la microélectronique sur silicium qui ont permis, en levant ces difficultés, cette révolution de l'imagerie infrarouge.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Détecteurs thermoélectriques
L'utilisation de l'effet Seebeck permet, de façon très simple, la mesure d'une différence de température. Cet effet, employé dans les couples thermoélectriques, décrit la différence de potentiel ΔV apparaissant entre deux jonctions réalisées par la mise en contact de deux matériaux conducteurs ou semi-conducteurs A et B, portées à des températures T et T + ΔT différentes (6).
L'expression de la différence de potentiel ΔV suit la relation suivante :
dans laquelle α est le coefficient de Seebeck, exprimé en V/°C qui dépend des matériaux utilisés.
Les semi-conducteurs présentent un effet Seebeck beaucoup plus important (plusieurs centaines de µV/°C) que celui des métaux (quelques dizaines de µV/°C) et c'est pourquoi ils sont avantageusement utilisés dans les détecteurs thermiques. En effet, par principe, l'effet thermoélectrique permet d'accéder directement à la différence de température entre l'absorbeur et le circuit de lecture (cf. 1) et l'on s'affranchit ainsi des variations de température du plan focal. Malgré tout, leur sensibilité reste faible devant celle d'un bolomètre qui peut atteindre plusieurs dizaines de mV/°C et il est d'usage, au sein d'un pixel, de les monter en série pour multiplier la sensibilité par le nombre de couples thermoélectriques utilisés. Toutefois cette pratique conduit à diviser la résistance thermique du pixel dans le même rapport par suite du nombre de ponts thermiques réalisés avec les thermocouples entre l'absorbeur et le circuit de lecture. De plus, la zone occupée dans le pixel pour la fonction « isolation thermique » devient rapidement importante car il faut augmenter d'autant la longueur des ponts thermiques et il devient difficile de concevoir des pixels de dimensions inférieures à 70 µm.
En pratique, l'utilisation des jonctions thermoélectriques est limitée aux matrices de faible complexité...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Détecteurs thermoélectriques
BIBLIOGRAPHIE
-
(1) - PUTLEY (E.H.) - History of infrared detection – Part I, The first detector of thermal radiation, - Infrared Phys. Vol. 22, pp. 125-131 (1982).
-
(2) - DAVIES (T.) - The history of near infrared spectroscopic analysis…, - Analysis magazine 26, no 4, M17-M19 (1998).
-
(3) - HERSCHEL (W.) - Phil. Trans. Roy. Soc.London, - Part II, pp. 284-292 (1800).
-
(4) - * - [http://coolcosmos.ipac.caltech.edu]
-
(5) - BERTRAND (F.), TISSOT (J.L.), DESTEFANIS (G.) - Second generation cooled infrared detectors state of the art and prospects, - 4th International workshop on advanced infrared technology and applications, Florence – Italie, 15-16 septembre 1997.
-
(6) - HOOGE (F. N.) - 1/f noise sources, - IEE Transaction on electron devices, Vol. 41, no 11 (Nov....
DANS NOS BASES DOCUMENTAIRES
SPIE Defense, Security & Sensing. Conférence, cours et salon.
A lieu tous les ans aux États-Unis en avril). [ http://www.spie.org]
SPIE Security + Defence Europe, Conférences, cours et salon.
A lieu tous les ans en Europe. [ http://www.spie.org]
Journées d'Études THERMOGRAM [ http://www.institut-thermographie.com]
QIRT (Quantitative infrared thermography)
HAUT DE PAGE
Il faut distinguer, d'une part, le nombre réduit des développeurs de technologies de détection infrarouge en non refroidi et, d'autre part, le nombre important de fabricants de systèmes ou caméras basés sur ces détecteurs. Cet encadré donne un aperçu des acteurs impliqués dans le développement des technologies de détection en non refroidi. Le marché s'approvisionne auprès de ces acteurs, en détecteurs ou en modules (détecteur + électronique de mise en œuvre) pour réaliser des systèmes infrarouges.
Les développements en détection infrarouge « non refroidi » ont été initiés principalement aux États-Unis et en Grande-Bretagne.
Des travaux ont en effet été menés aux États Unis depuis le début des années 1980 chez Honeywell qui a développé une filière...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive