Présentation
EnglishRÉSUMÉ
La complexité croissante des systèmes électroniques rend indispensable la maîtrise de leur comportement durant l’ensemble de leur durée de vie. La simulation numérique, dans sa globalité, est ainsi un outil incontournable face aux contraintes imposées par la certification. En effet, elle permet d’assurer le bon fonctionnement de ces systèmes lors de leur cohabitation dans le système complet (tel qu'un véhicule automobile ou un aéronef). Cette dernière doit aussi prendre en compte la complexité du problème (aspect multi échelle, problème multiphysique...).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Alain REINEIX : Directeur de Recherche CNRS - Institut XLIM – Université de Limoges
-
Etienne SICARD : Professeur - INSA de Toulouse
-
Jesus ASPAS PUERTOLAS : Ingénieur spécialiste CEM - ASTRIUM SPACE TRANSPORTATION
-
Gilles AKOUN : Ingénieur expert CEM - EADS IW
INTRODUCTION
Mvec l'accroissement du nombre de systèmes électroniques embarqués, l'évolution constante de leur complexité d'une part et l'augmentation du nombre de perturbateurs potentiels d'autre part, il devient difficile mais indispensable de maîtriser et d'assurer le bon fonctionnement des systèmes. Ceci est d'autant plus vrai que ces systèmes sont souvent destinés à augmenter le confort mais aussi la sécurité, par exemple dans les domaines aéronautique et automobile. De plus, on comprend bien que, même si tout est mis en œuvre pour vérifier les bonnes conditions de fonctionnement en environnement électromagnétiquement perturbé lors de la mise sur le marché du produit, il est indispensable d'assurer celles-ci tout au long de sa durée de vie et donc de pouvoir évaluer périodiquement l'évolution des marges de sécurité annoncées initialement.
Pour toutes ces raisons, aujourd'hui et pendant toutes les phases du cycle de vie du produit, un certain nombre d'analyses reposent sur la simulation numérique ou l'analyse physique des phénomènes décrits mathématiquement et résolus avec l'aide des techniques de calcul numérique. En Compatibilité Electromagnétique (CEM) des systèmes, depuis la conception préliminaire en passant par la conception détaillée, le choix de technologies, les spécifications aux différents fournisseurs, la qualification des sous-ensembles, la certification du système complet, jusqu'à la maintenance en conditions opérationnelles, de nombreuses phases peuvent être accompagnées de raisonnements qui s'appuient sur la résolution des équations régissant le comportement des champs électrique et magnétique dans l'espace et le temps : les équations de Maxwell.
Les équations de Maxwell, initialement écrites sous une forme différentielle ou intégrale dans le domaine temporel ou fréquentiel, peuvent prendre plusieurs formes suivant la technique de résolution choisie. Leur numérisation et la résolution d'un problème demandent l'élaboration d'un algorithme numérique reposant sur une technique donnée. Toutefois, la résolution d'un problème électromagnétique n'est pas simple et ce pour plusieurs raisons :
-
choix du modèle physique : le modèle est essentiellement lié à la vision qu'en a le modélisateur ; suivant le niveau de finesse (jusqu'à quelle échelle aller ?), le modèle sera plus ou moins complexe et, de ce fait, ne reflétera pas forcément les mêmes phénomènes ;
-
choix d'une discrétisation : pour un même modèle, la discrétisation va plus ou moins permettre de suivre les variations des champs et donnera donc un résultat différent suivant le cas ;
-
méconnaissance de certains paramètres physiques (permittivités…) : en simulation numérique, ces paramètres doivent être renseignés, le modélisateur doit donc faire un choix qui peut être dicté par une étude de sensibilité des observables face à une variabilité de ces paramètres.
La construction de modèles numériques demande naturellement leur validation, soit par rapport à des résultats connus soit par rapport à des tests physiques en laboratoire et/ou sur le système. Au niveau du cycle de vie, la construction de modèles doit suivre en parallèle le déroulement des diverses campagnes d'essais physiques. Pour pouvoir prendre en compte lors du cycle de conception toutes les modifications éventuelles qui peuvent apparaître au fur et à mesure de l'avancement du projet, les boucles de simulation doivent être suffisamment souples pour pouvoir répondre aux questions soulevées le plus tôt possible. C'est pour cette raison qu'un grand effort est porté aujourd'hui sur l'automatisation des procédures de « nettoyage » mais aussi sur la parallélisation dans la résolution des modèles. La gestion de configurations des modèles issus de ces étapes itératives devient impérative de façon à assurer la cohérence avec le dernier statut en termes de design.
Par ailleurs, lors du déroulement d'un projet de conception, il peut arriver que des contraintes, liées à d'autres métiers comme la thermique, la mécanique ou bien simplement une évaluation des coûts ou de poids, ou un changement de solutions techniques, viennent questionner le choix d'une solution de protection CEM. Cette complexité supplémentaire a donné lieu à l'élaboration de techniques hybrides reposant, entre autres, sur la suppression de la dépendance spatiale des équations aux dérivées partielles. Cette compression spatiale du problème permet ensuite de simuler, à un coût moins élevé, des changements sur les conditions aux limites du système qui permettent d'interfacer les modèles avec d'autres physiques au sein du même simulateur.
Enfin, le dernier élément de la chaîne d'un système complexe concerne les composants. Dans ce contexte nous décrirons les avancées autour du format IBIS (Input/Output Buffer Information Specification) permettant de conduire des simulations de l'intégrité du signal entre composants, avec en particulier la prise en compte des bus de données rapides.
MOTS-CLÉS
Simulation numérique différences finies éléments finis plans d'expérience méthodes hybrides modèle IBIS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Objectifs de la simulation
La simulation numérique est de plus en plus employée dans de nombreux domaines de la physique.
En mécanique, elle a montré son efficacité dans la phase de prédiction et d'optimisation, dès la phase de conception avant d'avoir réalisé tout prototype ;
En électromagnétisme, qui nous concerne ici, elle est utilisée pour valider des concepts permettant de guider les choix en phase de conception, ou vérifier des résultats théoriques ou expérimentaux sur une structure donnée. Dans ce cas, il s'agit, à partir de la validation pour un nombre réduit de points et par comparaison théorie/expérimentation, de pouvoir extrapoler à des cartographies complètes de champ dans toute la structure étudiée puis d'extraire des observables physiques mesurables comme des différences de potentiels, des courants, etc.
À partir du réel, il s'agit de concevoir un modèle qui permette de reproduire les phénomènes électromagnétiques le plus précisément possible. L'aspect précision fait intervenir trois notions importantes :
-
de la structure réelle à modéliser, on ne connaît pas forcément tout avec suffisamment de précision. Citons par exemple, les valeurs des constantes diélectriques, les positionnements des câbles. Cet aspect va induire dès le départ un écart entre le modèle et la réalité qui peut être variable suivant le jugement que le « modélisateur » a de la réalité et de son expérience ;
-
la modélisation va automatiquement introduire des erreurs inhérentes à la méthode de résolution. Si les équations de Maxwell sont a priori rigoureuses, le fait de discrétiser, de réaliser un maillage et d'évaluer les champs sur une grille va être source d'erreurs qu'il convient de maîtriser ;
-
les approximations de linéarité des schémas numériques classiques limitent souvent les domaines d'utilisation possible des outils de calcul par rapport aux cas réels étudiés (par exemple des difficultés importantes persistent dans la prise en compte des pertes par effet de peau – se reporter à l'article ...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Objectifs de la simulation
BIBLIOGRAPHIE
-
(1) - KELLER (J.B.) - The geometrical theory of diffraction, - Proc. Symp. on Microwave Optics, Eaton Electronics Research Lab., McGill University, Montreal, Canada (1953).
-
(2) - KOUYUUMJIAN (R.G.), PATHAK (P.M.) - A Uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, - Proc. IEEE, Vol. 62, pp. 1448-1461, November 1974.
-
(3) - VAUDON (P.) - Contribution à l'étude de la théorie géométrique de la diffraction. Application à la conception et à l'optimisation d'une base e mesure d'antennes - Thèse de Doctorat de l'université de Limoges, n 38-91 (1991).
-
(4) - TAFLOVE (A.), HAGNESS (S.C.) - Computational Electrodynamics : The finite-difference time-domain method, - 2nd ed. Norwood, MA : Artech House, (2000).
-
(5) - YEE (K.S.) - Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, - IEEE Trans. Antennas Propag., 14, 302–307 (1966).
-
...
DANS NOS BASES DOCUMENTAIRES
E. Sicard, A. Boyer « IC-EMC v2.5 », logiciel et manuel d'utilisation à accès libre en ligne sur http://www.ic-emc.org
HAUT DE PAGE
Les workshops internationaux EMC Compo (plus d'information sur http://www.emccompo.org)
Les « IBIS summits » (plus d'information sur http://www.eda.org/ibis/summits/
HAUT DE PAGE
IEC 61 967, pour la caractérisation de l'émission des composants, plus d'information http://www.iec.ch
IEC 62 132, pour la caractérisation de la susceptibilité des composants, plus d'information http://www.iec.ch
IEC 62 433, pour la modélisation CEM des composants, plus d'information http://www.iec.ch
HAUT DE PAGECet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive