Présentation

Article

1 - CONVERSION DE FRÉQUENCE

2 - BANCS DE FILTRES

3 - RELATIONS BANC DE FILTRES-ONDELETTES

  • 3.1 - Principe de la multirésolution
  • 3.2 - Équation d’échelle et équation d’ondelette
  • 3.3 - Ondelettes à partir de filtres
  • 3.4 - Passage de x (t ) à x n

Article de référence | Réf : E3162 v1

Conversion de fréquence
Filtres numériques - Conversion de fréquences et bancs de filtres

Auteur(s) : Jacques PRADO

Relu et validé le 14 mars 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Jacques PRADO : Maître de conférences à l’École nationale supérieure des télécommunications (ENST)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La période ou la fréquence d’échantillonnage est un élément essentiel dans de nombreux traitements numériques des signaux. Elle détermine souvent l’efficacité et la précision avec laquelle un traitement pourra être effectué, dans certains cas on aura besoin de la changer afin d’obtenir des algorithmes dépendant de la bande de fréquence à analyser, dans d’autres cas il s’agira simplement de passer d’un standard à un autre (passage de 44,1 kHz à 32 ou 48 kHz en audio). On trouvera des applications en communication, en traitement de parole, en traitement d’antennes, etc.

La transformation d’un signal donne une nouvelle représentation de ce signal. Le but recherché est souvent d’obtenir une meilleure localisation ou représentation de l’information contenue dans le signal, le qualificatif meilleure étant mesuré selon un critère qui reste à définir.

L’exemple élémentaire de transformation est la transformée de Fourier discrète qui à une séquence de longueur N associe une séquence de même longueur. Une telle transformation est dite sans perte ou orthogonale et est représentable par une matrice unitaire c’est-à-dire dont l’inverse est la matrice transposée conjuguée.

Dans beaucoup d’applications il peut être intéressant de séparer le signal d’entrée en plusieurs composantes en sous-bandes. Ceci permet en effet de situer la ou les bandes de fréquence où l’on peut trouver l’information. Une utilisation possible est la compression en vue de diminuer la quantité d’information à transmettre et qui consiste à ne prendre en compte que les bandes de fréquences dans lesquelles l’énergie est supérieure à un certain seuil. La transformée de Fourier discrète est un exemple, mais il est possible d’envisager un traitement équivalent à l’aide d’un ensemble de filtres passe-bande.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e3162


Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Conversion de fréquence

1.1 Changement de fréquence d’échantillonnage

Le changement de fréquence d’échantillonnage se présente soit sous forme d’accroissement et on parle d’interpolation, soit sous forme de réduction et on parle injustement de décimation  . Compte tenu de la discrétisation, on obtient les formes générales suivantes entre la plus grande fréquence prise égale à 1 et la plus petite fréquence F :

  • interpolation (de F vers 1) : F= 1 L ,LN  ;

  • décimation (de 1 vers F ) : F= 1 M ,MN  ;

  • conversion F F = L M ,L,MN (où F est la fréquence d’entrée et F ’ celle de sortie).

Nota :

afin de pouvoir se référer...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conversion de fréquence
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CROCHIERE (R.), RABINER (L.) -   Multirate Digital Signal Processing.  -  Prentice Hall (1983).

  • (2) - VAIDYANATHAN (P.P.) -   Multirate Systems and Filter Banks.  -  Prentice Hall (1993).

  • (3) - LU HUA XU (W.-S.), ANTONIOU (A.) -   An improved method for the design of FIR quadrature mirror-image filter banks.  -  IEEE Trans. Signal Processing, 46 (5), p. 1275-1281, mai 1998.

  • (4) - LU HUA XU (W.-S.), ANTONIOU (A.) -   Design of perfect reconstruction QMF banks by a null space projection method  -  (1995).

  • (5) - LU HUA XU (W.-S.), ANTONIOU (A.) -   Efficient iterative design method for cosine-modulated QMF banks.  -  IEEE Trans. Signal Processing, 44 (7), p. 1657-1668, juil 1996.

  • (6) - KOLPILLAI (R.D.), VAIDYANATHAN (P.P.) -   Cosine-modulated QMF banks satisfying perfect reconstruction.  -  IEEE Trans. Signal Processing, 40, p. 770-783...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS