Présentation
En anglaisRÉSUMÉ
Depuis sa naissance en 1985, le laser ultracourt de haute puissance (HP) est passé d'un simple concept prometteur à une technologie mature. La voie d'interaction unique du laser-matière dans le régime ultrarapide permet de nombreuses applications clés dans des secteurs aussi variés que la biologie, l'électronique, l'optique et encore beaucoup plus. Après avoir passé en revue les avantages du laser ultrarapide HP dans la fonctionnalisation de surface, cet article propose également de réfléchir à la manière d'explorer ces fonctionnalités intelligemment, et de les rendre abordables et accessibles à tous dans notre société.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Since its creation in 1985, high-power (HP) ultrashort laser has been developed from a concept to a mature technology. The unique laser-matter interaction pathway in the ultrafast regime enables many key applications in biology, electronics, optics, and beyond. In order to elaborate this, a review is given on ultrashort laser pulses enabled surface functionalization. This article also considers how to explore these features intelligently, and make them affordable and accessible to everybody in our society. To this end, pushing technology readiness level from science to industry is discussed in the scope of technology transfer and industrialization.
Auteur(s)
-
Xxx SEDAO : Chargé de Recherche - Laboratoire Hubert Curien, UMR 5516, Université Jean-Monnet, Saint-Étienne, France
-
Alain ABOU KHALIL : Chercheur Post-doctorat - Laboratoire Hubert Curien, UMR 5516, Université Jean-Monnet, Saint-Étienne, France
INTRODUCTION
Les lasers ultrabrefs sont une catégorie spéciale de lasers, dits impulsionnels, dont la durée d’impulsion varie entre les régimes femtoseconde et picoseconde. Même pour de faibles énergies de l’échelle du microjoule, la focalisation d’une telle impulsion sur une surface peut engendrer des puissances crêtes atteignant aisément le Gigawatt sur une durée extrêmement courte, à même de modifier significativement la surface sous-jacente. Ces modifications spécifiques apportées par l’irradiation laser peuvent donner lieu à de nouvelles propriétés de surface, utiles et bénéfiques au quotidien.
Dans cet article, nous passons en revue le principe de l’interaction d’une impulsion laser ultrabrève avec une surface donnée, ainsi que le suivi de l’évolution de cette surface. Des interactions entre photons, électrons et atomes sont induites à l’échelle microscopique, entraînant des modifications de surface à l’échelle macroscopique. Une sélection d’applications sont introduites en seconde partie afin d’illustrer l’association entre la modification de la surface induite par le laser et la fonctionnalisation macroscopique résultante.
Le secteur de l’énergie, en particulier du photovoltaïque, est développé à titre d'exemple, en raison de sa maturité technologique. Le secteur de la santé et des soins est aussi développé, en raison de la demande croissante au sein de la société. Enfin, on illustre quelques exemples dans le secteur des technologies de l’information avec le stockage des données et la détection.
La dernière partie de cet article se concentre sur les mécanismes de transfert du monde scientifique vers l’industrie : les défis techniques liés à la production ; et les défis économiques liés à la viabilité et à la robustesse des procédés mis en œuvre. Ces éléments constituent des aspects importants auxquels les ingénieurs doivent accorder une grande attention afin de pouvoir proposer, à terme, un produit prêt à l’emploi issu de sous-systèmes laser complexes.
Domaine : Optique et laser
Degré de diffusion de la technologie : Croissance
Technologies impliquées : Laser ultrabref
Domaines d’application : Énergie, santé, information
Principaux acteurs français :
Pôles de compétitivité : Optitec, Minalogic
Centre de compétence : Manutech-USD, ALPhANOV, Irepa Laser
Industriels : Amplitude, Fibercryst
Autres acteurs dans le monde : Laser Zentrum Hannover e.V. ; Oxford Lasers
Contact : [email protected] ; https://laboratoirehubertcurien.univ-st-etienne.fr/en/index.html
KEYWORDS
ultrashort laser pulses | ultrafast laser | femtosecond | surface functionalisation
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Traitements des métaux > Traitements de surface des métaux par voie sèche et en milieu fondu > Fonctionnalisation de surface par laser ultrarapide - Applications et voies vers l’industrialisation > Traitement laser ultrarapide
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Traitement laser ultrarapide
L’émergence des lasers à impulsions ultracourtes a un impact majeur dans tous les secteurs de la société : énergie, santé, arts, sports et loisirs, alimentation, information et sécurité, etc. L’invention de la technologie laser ultrarapide de haute puissance a ouvert de nouvelles opportunités pour l’imagerie, le diagnostic et le traitement de haute précision d’une large gamme de matériaux, notamment les diélectriques, les semi-conducteurs et les métaux, permettant de nombreuses applications dans des domaines allant du micro-usinage à la photonique en passant par les sciences de la vie.
Il est intéressant d’avoir une notion de la dimension des impulsions laser ultrarapides dans le temps et dans l’espace. Les impulsions laser ultrarapides sont de très petits paquets de lumière. Considérons une impulsion laser ultrarapide d’une durée d’impulsion de 100 femtosecondes (fs) (1 fs = 10–15 s), durée souvent utilisée dans le monde de la science et de la technologie des lasers ultrarapides. Bien que la lumière se propage à très grande vitesse (3 × 108 m · s–1, à cette vitesse le parcours de la Terre à la Lune se ferait en un peu plus d’une seconde), celle contenue dans cette impulsion laser ultra-rapide ne parcourt pas une grande distance : 30 μm environ, soit moins que le diamètre d’un cheveu humain. Ces petits paquets de lumière, lorsqu’ils illuminent la surface d’un matériau, engendrent des phénomènes intéressants.
1.1 Interaction entre impulsions laser ultrarapides et matériaux
Dans le domaine temporel, le processus débute toujours lors de l’interaction des photons avec les électrons. Puis, les électrons excités interagissent avec le réseau matériel, qui prend alors le relais. L’énergie emmagasinée par ce dernier se traduit alors par des mouvements/déplacements hydrodynamiques.
Une image synoptique des processus d’interaction d’un laser ultrarapide avec les matériaux est présentée dans la figure 1. Les processus induits par laser peuvent être grossièrement séparés en trois fenêtres temporelles distinctes chronologiquement, symbolisées par différentes couleurs dans la figure :
-
premièrement, en régime sub-picoseconde (ps) (1 ps = 10–12 s),...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Traitement laser ultrarapide
BIBLIOGRAPHIE
-
(1) - SHUGAEV (M.V.) et al - Fundamentals of ultrafast laser–material interaction. - MRS Bulletin, 41(12), p. 960‑968 (2016).
-
(2) - CHICHKOV (B.N.), MOMMA (C.), NOLTE (S.), VON ALVENSLEBEN (F.), TÜNNERMANN (A.) - Femtosecond, picosecond and nanosecond laser ablation of solids. - Appl. Phys. A, 63(2), p. 109‑115 (1996).
-
(3) - SEDAO (X.) et al - Self-Arranged Periodic Nanovoids by Ultrafast Laser-Induced Near-Field Enhancement. - ACS Photonics, 5(4), p. 1418‑1426, (2018).
-
(4) - SUGIOKA (K.), CHENG (Y.) - Femtosecond laser three-dimensional micro- and nanofabrication. - Applied Physics Reviews, 1(4), p. 041303 (2014).
-
(5) - DAVIS (K.M.), MIURA (K.), SUGIMOTO (N.), HIRAO (K.) - Writing waveguides in glass with a femtosecond laser. - Opt. Lett., 21(21), p. 1729‑1731 (1996).
-
(6)...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Spécification géométrique des produits (GPS) – État de surface : Surfacique (partie à préciser) - ISO 25178-X -
ANNEXES
Principaux acteurs français :
-
Pôles de compétitivité : Optitec, Minalogic,
-
Centres de compétence : Manutech-USD, Alphanov, Irepa Laser,
-
Industriels : Amplitude, Fibercryst.
Autres acteurs dans le monde : Laser Zentrum Hannover e.V. ; Oxford Lasers.
HAUT DE PAGE
Modular Photonics https://www.modularphotonics.com/
Femtoprint https://www.femtoprint.ch/
Argolight https://argolight.com/
Microsoft https://www.microsoft.com/fr-fr/
Warner Brothers https://www.warnerbros.com/
ATTOM
Keranova https://www.keranova.fr/actualites/
Manutech-USD https://www.manutech-usd.fr/
Cailabs https://www.cailabs.com/
Qiova https://www.qiova.fr/en/
ALPhANOV https://www.alphanov.com/en
HAUT DE PAGE1.2 Laboratoires – Bureaux d’études – Écoles – Centres de recherche (liste non...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive