Présentation
EnglishAuteur(s)
-
Yvon DELERABLÉE : Ingénieur d’études - Terrasol – Setec (ex-Antea Group)
-
Julien HABERT : Ingénieur - Cerema, Direction territoriale Nord-Picardie
-
Sébastien BURLON : Directeur d’études - Terrasol – Setec
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La chaleur présente dans les sols et dans les roches est connue et exploitée depuis très longtemps.
Au cours du 20e siècle, l’exploitation des ressources thermiques des terrains s’est largement développée et a donné naissance à la géothermie. Plusieurs types de géothermie existent selon la profondeur à laquelle est exploitée la ressource thermique du terrain. La géothermie très basse énergie concerne les premières centaines de mètres de terrain et permet d’exploiter la ressource thermique de ce dernier pour chauffer ou refroidir des bâtiments. L’exemple le plus simple d’application est le puits canadien. De l’air circule dans un tuyau à quelques mètres de profondeur et débouche dans une habitation. En été, il permet de refroidir l’habitation car, en circulant dans le tuyau, il se refroidit et, en hiver, il permet de chauffer au moins partiellement l’habitation car, en circulant dans le tuyau, il se réchauffe. Bien que la température du terrain augmente avec la profondeur sous l’effet du gradient thermique naturel, cette technique montre que la température du sol reste sensiblement constante depuis la surface du terrain et jusqu’à plusieurs dizaines de mètres de profondeur.
D’autres techniques se sont ensuite développées en exploitant ce constat. On peut citer : les doublets géothermiques sur nappe, les sondes géothermiques et les géostructures thermiques. Toutes ces techniques mettent par ailleurs en œuvre une pompe à chaleur et l’idée est d’utiliser le sol comme une source chaude (c’est-à-dire un milieu permettant l’extraction de chaleur) ou une source froide (c’est-à-dire un milieu permettant l’injection de chaleur) pour produire du chaud ou du froid.
Dans un doublet géothermique, c’est l’eau de la nappe circulant dans le terrain qui sert de source chaude ou froide. De l’eau est pompée à un endroit dans le terrain à partir d’un puits d’extraction et est rejetée à un autre endroit dans le terrain à partir d’un puits d’injection. L’écoulement de la nappe aux abords des deux puits joue un rôle prépondérant et différentes questions relatives aux interactions entre ces deux puits sont à considérer.
Pour une sonde géothermique, le principe est de faire circuler un fluide caloporteur dans un forage à l’intérieur d’un tube échangeur de chaleur, puis dans une pompe à chaleur. En été, le fluide injecté a, par exemple, une température de l’ordre de 30 °C et est extrait à une température de 25 °C. Le froid est alors produit par la pompe à chaleur. En hiver, le fluide est injecté, par exemple, à une température de l’ordre de 4 °C et est extrait à une température de 8 °C et la chaleur reste toujours produite par une pompe à chaleur. Les coefficients de performance atteints (rapport entre la puissance extraite et la puissance permettant le fonctionnement de la pompe à chaleur) sont de l’ordre de 3 à 5.
À certaines périodes de l’année, notamment au printemps et en automne, il est possible de ne pas faire appel à la pompe à chaleur. Par exemple, le fluide injecté peut avoir une température de l’ordre de 19 °C et être extrait à une température de 14 °C, on parle alors de geo-cooling ou de free-cooling.
Pour les géostructures thermiques, appelées aussi « géostructures énergétiques » ou « géostructures thermoactives », le principe est de faire circuler le fluide caloporteur dans un pieu, un panneau de paroi moulée ou un voussoir de tunnel. L’idée est de faire l’économie d’un forage dédié à la géothermie et de lier directement le tube échangeur aux cages de ferraillage des pieux ou des parois moulées. La technique des géostructures thermiques est née en Autriche dans le courant des années 1980 et a connu dans le courant des années 2000 et jusqu’à maintenant un intérêt considérable porté par la nécessité de développer des énergies renouvelables. Cette technique présente un comportement complexe car elle permet d’utiliser des ouvrages géotechniques à la fois comme éléments de fondation ou de soutènement avec un rôle mécanique évident et comme structures d’échanges thermiques. Les enjeux de conception et de dimensionnement de ces structures obligent à décrire précisément le comportement de celles-ci sur les plans thermiques et mécaniques.
Une présentation sur la manière d’appréhender ces problématiques et les bases de justification vis-à-vis des aspects thermiques et mécaniques est proposée dans cet article.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mécanique des sols et géotechnique
(40 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Justification des pieux
5.1 Types de justifications
En Autriche, où la technique des pieux énergétiques semble couramment utilisée, les structures géothermiques ne semblent pas être l’objet de vérifications particulières. En France, une position analogue à celle de l’Autriche aurait pu être choisie. Néanmoins, dans un premier temps, il a paru raisonnable de développer des principes de justification compatibles avec les normes de calcul en application (Eurocode 7 et norme NF P 94-262) à partir des connaissances acquises jusqu’à présent dans divers programmes de recherche et notamment le Projet ANR GECKO réalisé entre 2011 et 2014.
Un pieu géothermique n’est pas un pieu présentant une technologie différente des autres pieux. Tous les pieux peuvent être géothermiques : pieu foré, pieu tarière creuse, pieu battu, etc. Comme la température semble peu affecter les propriétés de résistance des sols (en dehors des variations de volume), il ne semble pas utile de vouloir définir des « courbes de frottement » et des « facteurs de pointe » spécifiques à cette technique. Un pieu géothermique diffère des autres pieux par le fait qu’il est soumis à un chargement thermique spécifique. Ce chargement ne s’applique pas à la tête du pieu, il est interne au pieu et est induit par des variations de température et les déformations volumiques associées. Le calcul d’un pieu géothermique impose en conséquence et systématiquement un calcul d’interaction sol-structure.
À partir des principes de calculs présentés ci-dessus, il est possible d’apprécier l’effet d’une variation de température de + 15 °C dans un pieu libre en tête (figure 29). Quatre grandeurs sont intéressantes à considérer :
-
la contrainte normale dans le pieu σ b ;
-
la variation d’effort normal ΔN th(z) ;
-
la variation de déplacement en tête de pieu Δwth ;
-
la variation de résistance mobilisée dans le terrain ΔR mob = R mob;th – R mob;mec (calculée à partir des variations du frottement axial mobilisé τ).
Pour une augmentation de température, l’effort normal dans le pieu augmente et le tassement...
Cet article fait partie de l’offre
Mécanique des sols et géotechnique
(40 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Justification des pieux
BIBLIOGRAPHIE
-
(1) - FRODL (S.), FRANZIUS (J.N.), BARTL (T.) - Design and construction of the tunnel geothermal system in Jenbach. - Geomechanics and Tunnelling, 3(5): 658-668 (2010).
-
(2) - ADAM (D.), MARKIEWICZ (R.) - Energy from earth-coupled structures, foundations, tunnels and sewers. - Géotechnique, 59(3): 229-236 (2009).
-
(3) - BRANDL (H.) - Energy Piles for Heating and Cooling of Buildings, - Seventh International Conference & Exhibition on Pilling and Deep Foundations, Vienna, Austria, 6 p. (1998).
-
(4) - PAHUD (D.), HUBBUCH (M.) - Measured thermal performances of the energy pies system of the Dock Midfield at Zurich Ariport. - Proceedings of the European Geothermal Congress, Unterhaching, Allemagne (2007).
-
(5) - BOURNE-WEBB (P.J.), AMATYA (B.), SOGA (K.), AMIS (T.), DAVIDSON (C.), PAYNE (P.) - Energy pile test at Lambeth College, London : geotechnical and thermodynamic aspects of pile response to heat cycles. - Géotechnique, 59(3): 237-248 (2009).
-
...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Justification des ouvrages géotechniques – Normes d’application nationale de l’Eurocode 7 – Fondations profondes. NF P 94-262, AFNOR, 208 p. - AFNOR - 2012
-
Fundamentals. American Society of Heating Refrigeration and Air – Conditioning Engineers, Inc., Atlanta, USA. - ASHRAE - 2009
-
modifié par le décret n° 2015-15 du 8 janvier 2015 portant sur la géothermie minime importance. - Décret n° 78-498 - du 28 mars 1978
-
Thermal Pile. Design, Installation & Materials Standards. Issue 1.0, Knowlhill, UK. 85 p. - GSHP association. - 2012
-
Utilisation de la chaleur du sol par des ouvrages de fondation et de soutènement en béton. Guide pour la conception, la réalisation et la maintenance. SIA D 0190, Zurich, Suisse. 104 p. - SIA - 2005
Cet article fait partie de l’offre
Mécanique des sols et géotechnique
(40 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive