Présentation

Article

1 - CONCEPTS ET ENJEUX DE L’INGÉNIERIE MÉTABOLIQUE ET DE LA BIOLOGIE DE SYNTHÈSE

2 - GRANDS SUCCÈS DE L’INGÉNIERIE MÉTABOLIQUE

  • 2.1 - Ingénierie métabolique et biocarburants
  • 2.2 - Ingénierie métabolique et produits pharmaceutiques
  • 2.3 - Ingénierie métabolique et substitution des commodités fossiles

3 - CONCEPTION RATIONNELLE ET BIOLOGIE DE SYNTHÈSE

  • 3.1 - Apport de l’informatique en ingénierie du vivant
  • 3.2 - Conception rationnelle de voies métaboliques
  • 3.3 - Modélisation de flux et optimisation des souches

4 - DE L’ÉPROUVETTE AU FERMENTEUR INDUSTRIEL

  • 4.1 - Substitution de produits pétrochimiques par des alternatives renouvelables
  • 4.2 - Quelques concepts permettant de faciliter le changement d’échelle
  • 4.3 - Quelques astuces de conception pour des rendements optimaux
  • 4.4 - Passage au fermenteur industriel
  • 4.5 - Confinement et sécurité génétique

5 - CONCLUSION

Article de référence | Réf : BIO800 v2

Conclusion
Ingénierie métabolique et biologie de synthèse pour la chimie verte

Auteur(s) : Cyrille PAUTHENIER, Jean-Loup FAULON

Date de publication : 10 févr. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L’urgence écologique et l’épuisement des ressources naturelles obligent l’industrie chimique à repenser son mode de production. Depuis les années 1990, l’ingénierie métabolique vise à concevoir « à la carte » des micro-organismes capables de produire par fermentation le composé chimique voulu à partir de ressources renouvelables. Cet article traite des différents concepts,  enjeux et de l’état de l’art de la discipline. Il sera aussi question des nouvelles directions prises par la biologie de synthèse et son impact sur l’avenir des biotechnologies industrielles.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Cyrille PAUTHENIER : Président et directeur scientifique - Abolis Biotechnologies, SAS, Évry, France

  • Jean-Loup FAULON : Directeur de recherche INRA - Micalis, Jouy-en-Josas, France

INTRODUCTION

Depuis le XIXe siècle, nos sociétés se sont développées sur la base d’une industrie florissante et sont devenues dépendantes de produits et d’énergies en provenance de sources non renouvelables. Du fait de la dégradation de l’environnement et de l’épuisement prochain d’un grand nombre de ressources naturelles, il est nécessaire de repenser nos modes de production et de consommation, à l’économie d’abord, puis de substituer aux besoins indispensables une production alternative propre et durable.

L’identification de souches naturelles a permis le développement des premiers procédés de fermentation industrielle au milieu du XXe siècle avec la production d’antibiotiques, d’acides aminés et de quelques acides organiques. Mais, depuis les années 1980, les progrès de l’ingénierie du vivant ont permis de franchir une étape supplémentaire avec l’ambition de construire des organismes « à la carte », capables de produire par fermentation le composé voulu à partir de ressources issues de la biomasse végétale. C’est l’objectif d’un champ de recherche appelé « ingénierie métabolique ». À ce jour, la fermentation de plus de 130 composés différents a été étudiée dans de multiples organismes afin de couvrir les besoins en carburants, plastiques et autres molécules de l’agriculture, de la chimie et de la médecine (voir l’article [BIO801] des Techniques de l’ingénieur).

Contraindre un micro-organisme à fabriquer un composé chimique est loin d’être une tâche aisée. Il est possible d’en produire de faibles quantités, mais obtenir un rendement économiquement viable est très dépendant de la source de carbone choisie, de l’échelle de production et de la méthode de séparation utilisée. Dans cet article, nous présentons un panel d’outils et de méthodes utilisables pour concevoir un organisme et augmenter de manière significative ses rendements en utilisant des approches de biologie de synthèse.

Nous pensons que les technologies issues de l’ingénierie métabolique et de la biologie de synthèse sont bientôt prêtes à sortir du monde académique et à être expérimentées plus largement à l’échelle industrielle, comme le montrent un certain nombre de succès industriels récents. Nous discuterons aussi du rôle des acteurs académiques et des entreprises, ainsi que des phases de développement et des astuces pour passer du laboratoire au fermenteur de production.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-bio800


Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

5. Conclusion

Cela fait bien longtemps que l’humanité utilise les micro-organismes pour produire des composés à usage alimentaire ou industriel, mais cette technique trouve actuellement un nouveau sens dans la perspective de substitution des ressources fossiles par des ressources naturelles. Depuis les années 1990 et les débuts de l’ingénierie métabolique, la recherche et l’industrie développent des micro-organismes génétiquement modifiés pour la production de nouveaux composés par fermentation. Comme nous l’avons vu, les techniques de manipulation génétique et de modélisation en provenance de la biologie de synthèse et de la biologie moléculaire permettent d’envisager ces problèmes plus globalement et rationnellement. Nous anticipons que la nouvelle génération de souches présentera des rendements nettement supérieurs à la précédente. Les récents progrès dans le monde des biocarburants et des acides organiques nous montrent que l’ingénierie métabolique est en phase de devenir applicable à l’échelle industrielle et de devenir compétitive par rapport à la chimie conventionnelle.

Remerciements

Nous tenons chaleureusement à remercier Christophe Luguel du pôle Industrie et Agro-Ressources et François Képès, du CNRS, pour leur relecture critique qui nous a permis d’étoffer certains points de cet article.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ANASTAS (P.), WARNER (J.C.) -   Green chemistry.  -  US Environmental Protection Agency. http://www.epa.gov/greenchemistry/

  • (2) -   Production of acetone and alcohol by bacteriological processes.  -  U.S. Patent US1315585(1919).

  • (3) - UNITED STATE DEPARTMENT OF AGRICULTURE -   U.S. Biobased Products : Market Potential and Projections Through.  -  http://usda.gov/oce/reports/energy/BiobasedReport2008.pdf (2025).

  • (4) - ERICKSON (B.), NELSON, WINTERS (P.) -   Perspective on opportunities in industrial biotechnology in renewable chemicals.  -  Biotechnology journal, vol. 7, no. 2, pp. 176-85 (2012).

  • (5) - XUE (C.), ZHAO (J.), LU (C.), YANG (S.T.), et al -   High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping.  -  Biotechnology and bioengineering, vol. 109, no. 11, pp. 2746-56 (2012).

  • ...

1 Normes et standards

CEN Produits bio-sourcés (Travaux du TC 411), EN 16575, 2014.

CEN Carburants liquides et gazeux, lubrifiants et autres produits liés au pétrole, de synthèse ou d’origine biologique (Travaux du TC19), en cours.

HAUT DE PAGE

2 Réglementation

En Europe

Directive n° 2009/41/CE du 6 mai 2009 relative à l’utilisation confinée de micro-organismes génétiquement modifiés

En France

Décret n° 2011-1177 du 23 septembre 2011 relatif à l’utilisation confinée d’organismes génétiquement modifiés (version consolidée du 26 septembre 2011)

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS