Présentation
EnglishRÉSUMÉ
L’urgence écologique et l’épuisement des ressources naturelles obligent l’industrie chimique à repenser son mode de production. Depuis les années 1990, l’ingénierie métabolique vise à concevoir « à la carte » des micro-organismes capables de produire par fermentation le composé chimique voulu à partir de ressources renouvelables. Cet article traite des différents concepts, enjeux et de l’état de l’art de la discipline. Il sera aussi question des nouvelles directions prises par la biologie de synthèse et son impact sur l’avenir des biotechnologies industrielles.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Cyrille PAUTHENIER : Président et directeur scientifique - Abolis Biotechnologies, SAS, Évry, France
-
Jean-Loup FAULON : Directeur de recherche INRA - Micalis, Jouy-en-Josas, France
INTRODUCTION
Depuis le XIXe siècle, nos sociétés se sont développées sur la base d’une industrie florissante et sont devenues dépendantes de produits et d’énergies en provenance de sources non renouvelables. Du fait de la dégradation de l’environnement et de l’épuisement prochain d’un grand nombre de ressources naturelles, il est nécessaire de repenser nos modes de production et de consommation, à l’économie d’abord, puis de substituer aux besoins indispensables une production alternative propre et durable.
L’identification de souches naturelles a permis le développement des premiers procédés de fermentation industrielle au milieu du XXe siècle avec la production d’antibiotiques, d’acides aminés et de quelques acides organiques. Mais, depuis les années 1980, les progrès de l’ingénierie du vivant ont permis de franchir une étape supplémentaire avec l’ambition de construire des organismes « à la carte », capables de produire par fermentation le composé voulu à partir de ressources issues de la biomasse végétale. C’est l’objectif d’un champ de recherche appelé « ingénierie métabolique ». À ce jour, la fermentation de plus de 130 composés différents a été étudiée dans de multiples organismes afin de couvrir les besoins en carburants, plastiques et autres molécules de l’agriculture, de la chimie et de la médecine (voir l’article [BIO801] des Techniques de l’ingénieur).
Contraindre un micro-organisme à fabriquer un composé chimique est loin d’être une tâche aisée. Il est possible d’en produire de faibles quantités, mais obtenir un rendement économiquement viable est très dépendant de la source de carbone choisie, de l’échelle de production et de la méthode de séparation utilisée. Dans cet article, nous présentons un panel d’outils et de méthodes utilisables pour concevoir un organisme et augmenter de manière significative ses rendements en utilisant des approches de biologie de synthèse.
Nous pensons que les technologies issues de l’ingénierie métabolique et de la biologie de synthèse sont bientôt prêtes à sortir du monde académique et à être expérimentées plus largement à l’échelle industrielle, comme le montrent un certain nombre de succès industriels récents. Nous discuterons aussi du rôle des acteurs académiques et des entreprises, ainsi que des phases de développement et des astuces pour passer du laboratoire au fermenteur de production.
MOTS-CLÉS
ingénierie métabolique Biologie de synthèse bioproduction biocarburants bioplastiques chimie bio-sourcée
VERSIONS
- Version archivée 1 de nov. 2013 par Cyrille PAUTHENIER, Jean-Loup FAULON
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech industrielles pour la chimie et l’énergie > Ingénierie métabolique et biologie de synthèse pour la chimie verte > Conception rationnelle et biologie de synthèse
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Chimie verte > Chimie du végétal et produits biosourcés > Ingénierie métabolique et biologie de synthèse pour la chimie verte > Conception rationnelle et biologie de synthèse
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Conception rationnelle et biologie de synthèse
3.1 Apport de l’informatique en ingénierie du vivant
Si l’ingénierie existait bien avant l’informatique, elle était avant tout basée sur le dessin, le calcul et les maquettes. Le développement de l’informatique à partir des années 1980 a entraîné avec lui le développement de technologies de conception assistée par ordinateur (CAO) et de simulations de systèmes in-silico. Un développement similaire s’en est suivi en biologie où la bio-informatique a pris une place de plus en plus importante, mettant à la disposition des biologistes de gigantesques bases d’informations et des outils pour concevoir et modéliser les systèmes biologiques naturels et artificiels.
Il faut avant tout commencer par énumérer les bases de données. Celles-ci ont permis de compiler l’état des connaissances génomiques (NCBI , EBI ), protéiques (Uniprot , PDB , PDBe , Brenda ...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conception rationnelle et biologie de synthèse
BIBLIOGRAPHIE
-
(1) - ANASTAS (P.), WARNER (J.C.) - Green chemistry. - US Environmental Protection Agency. http://www.epa.gov/greenchemistry/
-
(2) - Production of acetone and alcohol by bacteriological processes. - U.S. Patent US1315585(1919).
-
(3) - UNITED STATE DEPARTMENT OF AGRICULTURE - U.S. Biobased Products : Market Potential and Projections Through. - http://usda.gov/oce/reports/energy/BiobasedReport2008.pdf (2025).
-
(4) - ERICKSON (B.), NELSON, WINTERS (P.) - Perspective on opportunities in industrial biotechnology in renewable chemicals. - Biotechnology journal, vol. 7, no. 2, pp. 176-85 (2012).
-
(5) - XUE (C.), ZHAO (J.), LU (C.), YANG (S.T.), et al - High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. - Biotechnology and bioengineering, vol. 109, no. 11, pp. 2746-56 (2012).
-
...
DANS NOS BASES DOCUMENTAIRES
CEN Produits bio-sourcés (Travaux du TC 411), EN 16575, 2014.
CEN Carburants liquides et gazeux, lubrifiants et autres produits liés au pétrole, de synthèse ou d’origine biologique (Travaux du TC19), en cours.
HAUT DE PAGE
En Europe
Directive n° 2009/41/CE du 6 mai 2009 relative à l’utilisation confinée de micro-organismes génétiquement modifiés
En France
Décret n° 2011-1177 du 23 septembre 2011 relatif à l’utilisation confinée d’organismes génétiquement modifiés (version consolidée du 26 septembre 2011)
HAUT DE PAGECet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive