Présentation

Article

1 - SCINTILLATEURS ET PHOTOCONDUCTEURS

  • 1.1 - Mécanisme d'absorption des rayons X
  • 1.2 - Démultiplication ou mécanisme d'avalanche
  • 1.3 - Mécanisme de lecture : cas des scintillateurs
  • 1.4 - Mécanisme de lecture : cas des photoconducteurs

2 - GRANDES FAMILLES DE DÉTECTEURS

  • 2.1 - Systèmes à base de films
  • 2.2 - Écrans photostimulables (cassettes CR)
  • 2.3 - Détecteurs à base de caméras CCD
  • 2.4 - Détecteurs linéaires « slot scan » et technique CCD/TDI
  • 2.5 - Détecteurs à gaz
  • 2.6 - Amplificateurs de brillance (IIR)
  • 2.7 - Détecteurs plats (FPD) à détection indirecte
  • 2.8 - Détecteurs plats (FPD) à détection directe

3 - CONCLUSION

4 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : MED201 v1

Grandes familles de détecteurs
Imagerie médicale par rayons X - Détecteurs de rayons X

Auteur(s) : Thierry LEMOINE

Date de publication : 10 mars 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article décrit le fonctionnement des détecteurs de rayons X. Une première partie s'intéresse aux matériaux utilisés pour leur détection des rayons X (scintillateurs et photoconducteurs), et une seconde décrit les détecteurs à proprement parler: du film photographique, des cassettes CR et des amplificateurs de brillance aux nouvelles technologies numériques comme les détecteurs linéaires slot scan, les techniques TDI, CCD et à présent les détecteurs numériques plats.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

This article starts with the description of materials used for the detection of X-ray photons (scintillators and photoconductors). It then focuses on X-ray detectors themselves, from film, CR cassettes and the X-ray image intensifier to new digital technologies such as slot scan linear detectors, techniques such as TDI and CCD, and now flat panel detectors.

Auteur(s)

  • Thierry LEMOINE : Directeur technique THALES MICROWAVE & IMAGING SUBSYSTEMS, Vélizy, France

INTRODUCTION

A la différence des sources, les détecteurs de rayons X ont notablement évolué depuis les années 1980, suivant le chemin emprunté par la photographie numérique avec une décennie de décalage : le temps pour les industriels de trouver une solution technologique économiquement viable au problème de la grande taille de ces détecteurs – jusqu'à 43 × 43 cm. Depuis 2000 environ, il est clair que l'avenir appartient aux détecteurs numériques plats, qui aujourd'hui utilisent une dalle de verre supportant une électronique en silicium amorphe, la même technologie qui équipe les téléviseurs et écrans de PC. L'industrie des écrans LCD l'a en effet rendue accessible pour les applications professionnelles, et depuis 2010 environ les détecteurs numériques plats cessent d'être confinés aux équipements haut de gamme pour s'imposer peu à peu sur toutes les modalités ayant recours aux rayons X.

Cet article fait le point sur les technologies de réalisation des détecteurs. Dans une première section est détaillé le fonctionnement des matériaux (photoconducteurs et scintillateurs) qui transforment les rayons X en un signal lisible par un dispositif électronique (une charge électrique ou un signal lumineux) : une part essentielle des performances des détecteurs est le reflet des performances de ces matériaux. Ensuite, le lecteur trouvera le principe de fonctionnement des détecteurs proprement dits, classés par grandes familles dont on donnera les principales caractéristiques et quelques ordres de grandeur sur les performances accessibles. On ne négligera pas les technologies anciennes comme le film photographique, toujours utilisé et sur lequel de nombreux radiologues en activité se sont formés, mais on s'intéressera aussi – et surtout – à l'ensemble des autres techniques pour finir avec les plus récentes, les détecteurs numériques plats.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

detectors   |   X-ray detectors   |   X-ray   |   X-ray imaging

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-med201


Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Grandes familles de détecteurs

2.1 Systèmes à base de films

Cette technologie plus que centenaire est toujours utilisée, notamment en Asie, ce qui explique qu'on en parle ici. Autre raison, des générations de radiologues ont été formées en utilisant des films qui ont laissé une empreinte durable sur les « standards» de qualité image en radiographie. Le film est bien sûr inutilisable en fluoroscopie, sauf à placer une caméra 35 mm en sortie d'un IIR, ce qu'on ne fait plus depuis longtemps.

Le détecteur est ici un film photographique constitué d'une feuille en polyester d'épaisseur 0,2 mm supportant une émulsion photosensible à base de sels d'argent (des cristaux ioniques microscopiques d'halogénure d'argent, généralement du bromure d'argent Ag+Br) dispersés dans une gélatine d'environ 20 μm d'épaisseur. Le processus d'insolation de l'émulsion est en gros le suivant : quand un photon lumineux ou un photon X entre en collision avec un ion Br, cet ion perd son électron excédentaire et se dissout dans la gélatine. L'électron orphelin est capté par un ion Ag+, qu'il neutralise : le grain contenant cet atome d'argent est « impressionné », et l'ensemble des grains impressionnés forme une image latente enregistrée sur la pellicule ; elle se révélera lors du développement. Un seul photon X incident est nécessaire pour impressionner un grain de cristal, mais quand il s'agit de lumière visible, environ 10 photons sont nécessaires pour le même résultat. Ce seuil déclenchant l'insolation d'un grain est d'ailleurs affecté d'une forte dispersion (entre 4 et 50 photons visibles) et il est indépendant de la taille du grain. L'insolation est suivie du développement : l'émulsion est plongée dans une solution réductrice alcaline. Les grains impressionnés sont réduits à l'état de cristaux d'argent métallique et ressortent opaques, et ceux qui n'ont pas été impressionnés sont dissous dans la solution réductrice.

Le film peut être utilisé seul ou en contact avec des scintillateurs. L'argent est un métal suffisamment lourd (K edge = 25,5 keV) pour arrêter quelques photons X, sous réserve que l'émulsion soit épaisse. On peut donc utiliser un film sans scintillateur et bénéficier d'une résolution un ordre de grandeur supérieure aux meilleures technologies numériques connues en imagerie X : on...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Grandes familles de détecteurs
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - VAN METTER (R.), BEUTEL (J.), KUNDEL (H.) -   Handbook of medical imaging. Physics and psychophysics.  -  SPIE Press Monograph, vol. 1, part. 1 (2000).

  • (2) - WEBB (S.) -   The physics of medical imaging.  -  Taylor & Francis Editors (1998).

  • (3) - DENDY (P.P.), HEATON (B.) -   Physics for diagnostic radiology.  -  Taylor & Francis Editors (1999).

  • (4) - BUSHBERG (J.T.), SEIBERT (J.A.), LEIDHOLDT (E.M.), BONNE (J.M.) -   The essential physics of medical imaging.  -  Lippincott, Williams & Wilkins Editors LWW (2002).

  • (5) - DOWSETT (D.J.), KENNY (P.A.), JOHNSTON (R.E.) -   The physics of diagnostic imaging.  -  Hadder-Arnold Editors (2006).

  • (6) - HUDA (W.), SLOANE (R.) -   Review of radiologic physics.  -  Lippincott, Williams & Wilkins Editors LWW (2003).

  • ...

1 Annuaires

HAUT DE PAGE

1.1 Fournisseurs de composants

Détecteurs numériques plats

TRIXELL/THALES, VARIAN, CANON, PERKIN-ELMER, ANRAD/ANALOGIC, HOLOGIC, TOSHIBA, VIEWORKS, KONICA, FUJI, CARESTREAM, VATECH/RAYENCE, DALSA/TELEDYNE, I-RAY, CARERAY, DRTECH, etc.

Amplificateurs de brillance

THALES, TOSHIBA, PHILIPS, SIEMENS

Systèmes CR (Computed Radiography )

CARESTREAM, FUJI, KONICA, ICR-Co, AGFA

Nota :

les systèmes à base de films ou de composants CCD sont généralement développés par les équipementiers eux-mêmes.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS