Présentation
EnglishRÉSUMÉ
Cet article décrit le fonctionnement des détecteurs de rayons X. Une première partie s'intéresse aux matériaux utilisés pour leur détection des rayons X (scintillateurs et photoconducteurs), et une seconde décrit les détecteurs à proprement parler: du film photographique, des cassettes CR et des amplificateurs de brillance aux nouvelles technologies numériques comme les détecteurs linéaires slot scan, les techniques TDI, CCD et à présent les détecteurs numériques plats.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Thierry LEMOINE : Directeur technique THALES MICROWAVE & IMAGING SUBSYSTEMS, Vélizy, France
INTRODUCTION
A la différence des sources, les détecteurs de rayons X ont notablement évolué depuis les années 1980, suivant le chemin emprunté par la photographie numérique avec une décennie de décalage : le temps pour les industriels de trouver une solution technologique économiquement viable au problème de la grande taille de ces détecteurs – jusqu'à 43 × 43 cm. Depuis 2000 environ, il est clair que l'avenir appartient aux détecteurs numériques plats, qui aujourd'hui utilisent une dalle de verre supportant une électronique en silicium amorphe, la même technologie qui équipe les téléviseurs et écrans de PC. L'industrie des écrans LCD l'a en effet rendue accessible pour les applications professionnelles, et depuis 2010 environ les détecteurs numériques plats cessent d'être confinés aux équipements haut de gamme pour s'imposer peu à peu sur toutes les modalités ayant recours aux rayons X.
Cet article fait le point sur les technologies de réalisation des détecteurs. Dans une première section est détaillé le fonctionnement des matériaux (photoconducteurs et scintillateurs) qui transforment les rayons X en un signal lisible par un dispositif électronique (une charge électrique ou un signal lumineux) : une part essentielle des performances des détecteurs est le reflet des performances de ces matériaux. Ensuite, le lecteur trouvera le principe de fonctionnement des détecteurs proprement dits, classés par grandes familles dont on donnera les principales caractéristiques et quelques ordres de grandeur sur les performances accessibles. On ne négligera pas les technologies anciennes comme le film photographique, toujours utilisé et sur lequel de nombreux radiologues en activité se sont formés, mais on s'intéressera aussi – et surtout – à l'ensemble des autres techniques pour finir avec les plus récentes, les détecteurs numériques plats.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Conclusion
Les détecteurs sont les dispositifs de radiologie par rayons X ayant fait les plus grands progrès depuis les années 1980. Le praticien et le patient en ont l'un et l'autre bénéficié : facilité d'usage accrue (plus de développement, plus de cassette à insérer dans un lecteur), image instantanément disponible, excellente résolution et plus faible dose grâce à l'introduction du scintillateur en iodure de césium dans les détecteurs plats. Vers 2000-2005, l'apanage des équipements haut de gamme, les détecteurs numériques plats sont maintenant introduits dans tous les types d'équipements pour des usages diagnostiques ou interventionnels. Les dernières avancées technologiques concernent surtout la facilité d'usage : portabilité, interfaçage simple avec le réseau informatique de l'hôpital (PACS), avec le générateur (auto-déclenchement), autonomie (batterie intégrée, liaison wifi, mémoire de stockage d'images, couplage avec une tablette informatique). On peut donc considérer que les détecteurs numériques plats atteignent dans les années 2010 leur maturité technologique et industrielle, mais cela ne doit pas masquer les nouvelles ruptures qui se profilent, qu'elles visent à réduire le bruit électronique (donc la dose) et/ou à améliorer la résolution (par exemple les technologies CMOS, la détection directe avec de nouveaux photoconducteurs), ou qu'elles ambitionnent de réduire les coûts de fabrication.
Du strict point de vue des performances, le stade ultime aujourd'hui envisagé est l'introduction de détecteurs ayant une capacité de comptage spectroscopique, qui pourrait donner accès à une information sur la nature atomique des tissus et agents de contraste, et peut-être à une forme nouvelle d'imagerie moléculaire.
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - VAN METTER (R.), BEUTEL (J.), KUNDEL (H.) - Handbook of medical imaging. Physics and psychophysics. - SPIE Press Monograph, vol. 1, part. 1 (2000).
-
(2) - WEBB (S.) - The physics of medical imaging. - Taylor & Francis Editors (1998).
-
(3) - DENDY (P.P.), HEATON (B.) - Physics for diagnostic radiology. - Taylor & Francis Editors (1999).
-
(4) - BUSHBERG (J.T.), SEIBERT (J.A.), LEIDHOLDT (E.M.), BONNE (J.M.) - The essential physics of medical imaging. - Lippincott, Williams & Wilkins Editors LWW (2002).
-
(5) - DOWSETT (D.J.), KENNY (P.A.), JOHNSTON (R.E.) - The physics of diagnostic imaging. - Hadder-Arnold Editors (2006).
-
(6) - HUDA (W.), SLOANE (R.) - Review of radiologic physics. - Lippincott, Williams & Wilkins Editors LWW (2003).
- ...
DANS NOS BASES DOCUMENTAIRES
1.1 Fournisseurs de composants
Détecteurs numériques plats
TRIXELL/THALES, VARIAN, CANON, PERKIN-ELMER, ANRAD/ANALOGIC, HOLOGIC, TOSHIBA, VIEWORKS, KONICA, FUJI, CARESTREAM, VATECH/RAYENCE, DALSA/TELEDYNE, I-RAY, CARERAY, DRTECH, etc.
Amplificateurs de brillance
THALES, TOSHIBA, PHILIPS, SIEMENS
Systèmes CR (Computed Radiography )
CARESTREAM, FUJI, KONICA, ICR-Co, AGFA
les systèmes à base de films ou de composants CCD sont généralement développés par les équipementiers eux-mêmes.
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive