Présentation

Article

1 - STRUCTURES DE BIFURCATIONS

2 - EXEMPLES DE SYSTÈMES À TEMPS DISCRET

3 - CONCLUSION

4 - GLOSSAIRE

5 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : S7186 v1

Conclusion
Structures de bifurcation dans des systèmes non linéaires à temps discret

Auteur(s) : Danièle FOURNIER-PRUNARET

Date de publication : 10 avr. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Nombre de systèmes en ingénierie (automatique, électronique, télécommunications…) sont intrinsèquement non linéaires. Une approche globale, plutôt que par linéarisation, est nécessaire afin de bien comprendre leur comportement et de pouvoir définir les meilleures plages de fonctionnement, notamment lorsque les variations paramétriques peuvent conduire à des phénomènes complexes liés à des structures de bifurcation dépendant du type de non-linéarité impliqué.

L’objectif de cet article est d’introduire, à travers des exemples choisis, les structures de type « boîtes emboitées » et « boîtes en file ». Des systèmes assez simples, modélisés par des récurrences de dimension 1 comprenant des non-linéarités caractéristiques qui permettent d’illustrer ces différentes structures de bifurcation, sont proposés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Les systèmes utilisés ou conçus dans les domaines de l’ingénierie sont pour la plupart intrinsèquement non linéaires. Certains modèles peuvent être approximés et simplifiés, ce qui conduit à une modélisation linéaire. Néanmoins, dans de nombreux cas, les approximations qui conduisent à un système linéaire entrainent une perte d’information par rapport au système de départ. Il est donc important de conserver autant que possible les non-linéarités d’un système. Les systèmes linéaires peuvent être étudiés en utilisant les outils de l’algèbre linéaire, mais il n’existe pas d’outils génériques aussi puissants permettant d’analyser l’ensemble des systèmes non linéaires, tout au plus peut-on classifier ces systèmes, par exemple à partir du type de non-linéarité dominante, et proposer une analyse du comportement du système. L’introduction des outils numériques au milieu du XXe siècle a permis une avancée significative dans ce type d’analyse. En général, une combinaison entre des études théoriques et l’utilisation des outils numériques va permettre de mieux appréhender l’impact des non-linéarités dans un système. Les études numériques ont permis de mettre en évidence des comportements complexes qu’il est impossible d’observer dans un système linéaire à variables réelles, comme les comportements qualifiés de chaotiques.

Les modèles de systèmes électroniques, mécaniques, automatiques ou utilisés dans les transmissions en télécommunications font souvent intervenir des paramètres que l’utilisateur peut modifier pour que le système agisse de façon adéquate. Par exemple, il peut être utile qu’un système reste sur un état stationnaire fixe ; dans d’autres cas, il peut suffire que le système reste borné (cas de la stabilité BIBO – Bounded Input Bounded Output, c’est-à-dire entrée bornée, sortie bornée) ; des comportements de type périodique peuvent également présenter un intérêt. Dans certains cas, l’utilisateur peut ne pas avoir la maîtrise complète des paramètres ; ceux-ci peuvent varier dans des plages où les comportements sont drastiquement modifiés. Pour tous les systèmes, la connaissance des comportements possibles lorsque les paramètres évoluent est du plus grand intérêt. Une notion fondamentale est celle de bifurcation qui correspond à une modification qualitative du comportement d’un système lorsqu’un ou plusieurs paramètres sont modifiés. Le système peut passer d’un état stationnaire stable à un comportement périodique, avec une période qui peut changer très rapidement par variation d’un paramètre, voire à une instabilité complète. Des comportements appelés « chaotiques » qui semblent désordonnés peuvent également se produire.

Cet article s’intéresse plus particulièrement aux bifurcations qui interviennent dans des systèmes à temps discret modélisés par une transformation ponctuelle ou récurrence. Il est possible de mettre en évidence, non seulement des bifurcations spécifiques, mais aussi des structures globales de bifurcations qui sont associées à certains types de non-linéarités. Ces structures globales permettent une compréhension d’ensemble d’un système et peuvent tout particulièrement expliquer quels mécanismes conduisent au chaos. On obtient alors ce que l’on appelle une « route vers le chaos ».

Dans la première section, plusieurs types de non-linéarités seront étudiées à partir de modèles génériques : une non-linéarité de type quadratique ou cubique, une non-linéarité de type modulo ou des discontinuités de la fonction (ou de sa dérivée) qui intervient dans la modélisation. Pour chaque non-linéarité, sera mise en évidence une structure de bifurcations spécifique : structure « boîtes emboîtées » pour la première non-linéarité, structure « boîtes en files » type « addition de périodes » ou « incrémentation de périodes » pour la seconde.

La seconde section permettra de présenter des exemples de systèmes simples issus de plusieurs domaines de l’ingénierie qui présentent ces différents types de structures.

Ainsi, seront proposées l’étude d’un modulateur dans un système de transmission, celle d’un oscillateur et celle d’un circuit électrique hybride. Dans chacun de ces exemples, il est intéressant d’analyser les comportements du système afin, soit de choisir les paramètres qui vont correspondre à un comportement stable, ou au contraire ceux qui vont conduire à un comportement chaotique et borné. En effet, le chaos correspond à un comportement qui semble aléatoire, et il est possible d’utiliser des signaux chaotiques pour générer par exemple des nombres pseudo-aléatoires.

La conclusion donnera quelques perspectives pour des études plus complexes.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7186


Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

3. Conclusion

Des structures de bifurcations associées à des non-linéarités spécifiques ont été présentées. Nous avons décrit les structures de bifurcations boîtes emboitées et boîtes en files à travers des exemples génériques et des exemples particuliers de systèmes en ingénierie. La connaissance de ces structures permet d’appréhender les comportements qui apparaissent dans certains systèmes non linéaires et de comprendre leur évolution lorsque les paramètres varient, en particulier les routes vers le chaos. Les objectifs de ces études sont doubles : d’une part, chercher à comprendre comment les comportements chaotiques apparaissent afin d’éliminer les paramètres qui induisent ce type de phénomène, d’autre part, obtenir du chaos pour l’utiliser dans certaines applications spécifiques comme les transmissions sécurisées ou la génération de nombres pseudo-aléatoires par exemple.

Ces études peuvent être généralisées. Une transformation polynômiale de degré élevé et comprenant plusieurs extrema fera apparaître une structure de type BE, mais d’autant plus complexe que le nombre d’extrema sera important. Une transformation linéaire par morceaux avec un grand nombre de branches complexifiera également la structure BF induite.

L’existence des structures présentées ici n’est pas exclusive. Lorsque le système considéré contient plusieurs types de linéarités, il est tout à fait envisageable de les voir coexister et/ou se mélanger entre elles. Par exemple, certaines transformations permettent d’obtenir un mélange entre les structures BE et BF ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DEVANEY (R.) -   An Introduction to Chaotic Dynamical System.  -  Addison-Wesley (1989).

  • (2) - FATOU (P.) -   Mémoire sur les équations fonctionnelles.  -  Bull. Soc. Math. France, 47, 1919, p161-271, 48, p33-94, p208-314 (1920).

  • (3) - MIRA (C.) -   Systèmes à dynamique complexe et bifurcations boîtes emboîtées.  -  RAIRO Aut., Fr, 12, no 1, pp. 63-94 (1978) ; 12, no 2, pp. 171-190 (1978).

  • (4) - GUMOWSKI (I.), MIRA (C.) -   Dynamique Chaotique.  -  Ed. Cépadues, Toulouse (1980).

  • (5) - MYRBERG (P.J.) -   Iteration der reellen Polynome zweiten Grades.  -  Ann. Acad. Sc. Fenn. (Finlande, (a) (1958), Sér. A,256, pp. 1–10 ; (b) (1959),268, pp. 1-10 ; (c) (1963),336, pp. 1-10. Sur l’itération des polynômes réels quadratiques – Journal de Math pures et appliquées, 41, 339-351 (1962).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS