Article de référence | Réf : S7582 v1

Acceptation et utilisation
Régulation d’un processus industriel par réseaux de neurones

Auteur(s) : Fabrice SORIN, Lionel BROUSSARD, Pierre ROBLIN

Date de publication : 10 juin 2001

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Fabrice SORIN : Chef du Service Contrôle et Régulation Procédés - ALSTOM Power Conversion France

  • Lionel BROUSSARD : Ingénieur Développement Service Contrôle et Régulation Procédés - ALSTOM Power Conversion France

  • Pierre ROBLIN : Directeur Technique Technologie et Systèmes Standards - ALSTOM Power Conversion France

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le souci d’améliorer les performances des processus industriels et de réduire les coûts sont des raisons déterminantes pour l’introduction de nouvelles stratégies de régulation dans les techniques d’automatisme. Dans son calculateur d’automatisme temps réel rapide, ALSTOM intègre la technique de modélisation et d’apprentissage en ligne de processus par des réseaux artificiels neuronaux. Ceux-ci permettent de représenter des relations fonctionnelles complexes difficiles à décrire sous une forme analytique de systèmes non linéaires ou de systèmes variables en fonction du temps.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7582


Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

8. Acceptation et utilisation

Outre le problème de sécurité évoqué ci-dessus 7, quelques autres aspects sont déterminants pour que ces nouvelles technologies, et plus particulièrement les réseaux artificiels neuronaux, soient acceptées et utilisées.

Les nouvelles technologies doivent être conçues pour être utilisées par des ingénieurs de mise en service ou de maintenance, sans qualifications poussées.

Par comparaison avec les techniques de régulation bien connues de type PID (proportionnel intégral dérivé), les exigences pour les applications avec des réseaux neuronaux sont les suivantes :

  • l’intégration dans un environnement connu avec des outils standards connus ;

  • des règles et des instructions faciles à suivre pour le réglage des paramètres des applications ;

  • un nombre limite de paramètres des réseaux neuronaux à régler à ne pas dépasser ;

  • des règles simples et claires pour évaluer le comportement stationnaire et dynamique des réseaux neuronaux avec assistance en cas de défauts.

Pour les applications décrites dans ce document, ces conditions ont été remplies. La mise en œuvre s’effectue dans l’environnement d’automatisme d’ALSTOM (ALSPA C80-HPC) bien connu du personnel de mise en service et de maintenance. Le nombre de paramètres qu’il est nécessaire de régler pour faire fonctionner l’installation est maîtrisable.

Pour le système de filtrage non linéaire, hormis le taux d’apprentissage, la structure du réseau et les algorithmes d’apprentissage sont définis et fixés par un spécialiste. Seul le taux d’apprentissage qui est exprimé, pour des raisons de simplicité, en constante de temps et bande passante, est ajusté lors de la mise en service.

Pour la compensation active, on retrouve des choses similaires, le nombre de paramètres à ajuster en mise en service est légèrement supérieur en raison des régulateurs...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Acceptation et utilisation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - YASMINE (Y.) -   Stage sur les réseaux de neurones.  -  CICT, 1999. http://www.cict.fr.

  • (2) - HARDY (J.-M.), STRASSERA (A.) -   Les réseaux de neurones.  -  1998.

  • (3) - ROSSI (F.) -   Introduction aux réseaux de neurones.  -  1997. http://www.ceremade.dauphine.fr/~rossi/work.html

  • (4) - HAMBRECHT (A.) -   Requirements for Integration of Neural Control in Automation Systems.  -  Third European Congress on Intelligent Techniques and Soft Computing. EUFIT ’95 Proceedings Vol. 3, p. 1861, Aachen, Germany, August 1995.

  • (5) - FECHNER (T.H.), NEUMERKEL (D.), KELLER (I.) -   Neural Network Filter for Steel Rolling.  -  ICNN ’94 IEEE International Conference on Neural Network, June 1994 in Orlando, USA.

  • (6) - HUNT (K.), SBARBARO (D.), ZBIKOWSKI (R.) -   Neural Network for Control Systems – A Survey, Automatica.  -  ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS