Présentation

Article

1 - SURFACE DE L’ALUMINIUM ET DE SES ALLIAGES

2 - MÉCANISME DE FORMATION DES COUCHES ANODIQUES

3 - PRINCIPAUX PROCÉDÉS ET LEURS APPLICATIONS

4 - MISE EN ŒUVRE INDUSTRIELLE D’UNE GAMME D’ANODISATION

5 - PRINCIPALES PROPRIÉTÉS USUELLES ET CONTRÔLE DES COUCHES ANODIQUES

  • 5.1 - Adhérence
  • 5.2 - Épaisseur
  • 5.3 - Qualité de colmatage
  • 5.4 - Tests de corrosion accélérée
  • 5.5 - Résistance à l’abrasion, dureté
  • 5.6 - Masse volumique apparente
  • 5.7 - Propriétés optiques
  • 5.8 - Propriétés mécaniques
  • 5.9 - Propriétés électriques
  • 5.10 - Propriétés thermiques

| Réf : M1630 v2

Mécanisme de formation des couches anodiques
Anodisation de l’aluminium et de ses alliages

Auteur(s) : Jean Sylvestre SAFRANY

Date de publication : 10 mars 2001

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dans son principe, la découverte de l’oxydation anodique de l’aluminium et de ses alliages suit de près celle du métal lui-même.

Dès 1857, Buff découvre que l’aluminium forme un oxyde lorsqu’il est placé comme anode dans une cellule d’électrolyse. En 1911, De Saint-Martin propose les principes de base de l’anodisation sulfurique. En 1923, c’est au tour de Bengough et Stuart de développer l’anodisation chromique.

Par la suite, de nombreux perfectionnements des procédés de traitement anodique voient le jour, mettant à profit l’importante diversité offerte dans ce domaine ; la modification des électrolytes, des conditions opératoires et des alliages traités permet d’obtenir des propriétés de surface très variées.

En effet, si l’aluminium et ses alliages sont aujourd’hui largement utilisés pour leurs propriétés intrinsèques (légèreté, bonne tenue à la corrosion, conductibilité thermique ou électrique...), il convient de souligner que les traitements d’anodisation permettent d’y ajouter, en fonction des applications visées, des propriétés très spécifiques :

  • renforcement important de la tenue à la corrosion ;

  • amélioration de la dureté et de la résistance à l’abrasion ;

  • diminution du coefficient de frottement ;

  • isolation thermique ;

  • isolation électrique ;

  • possibilité de coloration ;

  • base d’accrochage avant revêtement organique ou dépôt galvanique, etc.

C’est la raison pour laquelle les procédés d’anodisation sont aujourd’hui très répandus dans l’industrie pour des applications très diverses allant du transport au bâtiment, en passant par les loisirs, la décoration, les pièces mécaniques, les articles culinaires...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-m1630


Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

2. Mécanisme de formation des couches anodiques

L’électrolyse en milieu aqueux et sous courant continu produit normalement un dégagement gazeux aux deux électrodes (hydrogène à la cathode, oxygène à l’anode). En revanche, si l’on utilise de l’aluminium comme anode, aucun dégagement gazeux n’est observé sur celle-ci, alors que l’hydrogène est toujours visible à la cathode.

En première approximation, on peut décrire ce phénomène comme étant une combinaison entre l’aluminium dissous et l’oxygène naissant, selon la réaction :

2 Al + 3O2– ® 6 e + Al2O3

Cependant, cette description ne peut être que partielle car elle ne suffit pas à expliquer les différences fondamentales de comportement que l’on observe en modifiant l’électrolyte et les conditions opératoires. En particulier, selon l’action dissolvante du milieu, on obtiendra des couches anodiques à caractère barrière ou à caractère poreux.

2.1 Anodisation de type barrière

Si l’on procède, à tension donnée, à une anodisation dans un milieu qui n’a pas d’action dissolvante sur le métal, ni sur son oxyde (solutions à base d’acide borique, d’acide tartrique, d’acide citrique, de tartrate d’ammonium, de carbonate de sodium, de phosphate de sodium...), on constate une chute rapide de l’intensité, qui tend vers une valeur nulle (figure 2). D’un point de vue pratique, ce type d’opération n’est possible que si le pH de la solution est compris entre 3,5 et 8,5.

Sous l’action du courant, les espèces Al 3+, O2– et OH sont transportées à travers la couche, la croissance du film se réalisant à l’interface métal / oxyde, voire, en fonction du milieu utilisé, à l’interface oxyde / solution, avec incorporation dans la couche des anions issus de l’électrolyte [5]...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Mécanisme de formation des couches anodiques
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS