Présentation
Auteur(s)
-
Jean-Paul HATON : Professeur à l’université Henri-Poincaré, Nancy I - LORIA/INRIA - Membre de l’Institut universitaire de France
-
Marie-Christine HATON : Professeur à l’université Henri-Poincaré, Nancy I - LORIA/INRIA
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L’intelligence artificielle (IA) a vu son importance économique s’accroître considérablement par sa capacité à s’attaquer à de nouvelles classes de problèmes, différents de ceux traités par l’informatique classique. Ces problèmes relèvent d’activités humaines variées (perception, prise de décision, planification, diagnostic, interprétation de données, compréhension du langage, conception) et présentent la particularité commune de nécessiter une exploitation raisonnée d’une grande quantité de connaissances, pour l’essentiel spécifiques du domaine étudié et acquises auprès d’experts.
La conception de systèmes à bases de connaissances (SBC) capables de réaliser des fonctions de raisonnement symbolique constitue ainsi à l’heure actuelle une part importante des recherches et des développements en IA. De tels systèmes nécessitent en particulier une représentation adéquate des connaissances mises en jeu ainsi que des mécanismes efficaces d’exploitation de ces connaissances ou de raisonnement.
Cet article présente un panorama des SBC et de leurs applications. Dans un premier temps sont envisagés les modes de représentation des connaissances utilisés dans les SBC : représentations logiques, réseaux sémantiques, règles de production, objets structurés, modèles, graphes causaux. Le paragraphe suivant est consacré à la démarche de résolution de problèmes complètement formalisés, tout d’abord dans une approche générale puis dans le cadre des problèmes avec contraintes. La fin de ce paragraphe traite du problème de la planification qui requiert des techniques particulières. Sont ensuite présentés les divers modes de raisonnement qui constituent les principes de base du fonctionnement des SBC. La coopération ou la concurrence entre agents dans les systèmes multiagents, qui constituent un univers de recherche et de développement important, sont ensuite développés. Un domaine très actuel est celui de la capitalisation des connaissances et de la mémoire d’entreprise, à la suite duquel est également traité le cas de la fouille de données. Nous envisageons ensuite les méthodes et outils pour le développement de systèmes à bases de connaissances, avant de donner quelques indications sur les développements actuels et de donner quelques perspectives et conclusions.
VERSIONS
- Version courante de mai 2012 par Jean-Paul HATON, Marie-Christine HATON
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Résolution de problèmes
2.1 Méthodes
Les énigmes mathématiques ou logiques et la démonstration de théorèmes sont les premiers problèmes que l’on a tenté de déléguer à une machine, dans l’espoir que les capacités de mémorisation et la rapidité de calcul leur permettraient de faire plus vite et au moins aussi bien que l’homme. En réalité, le nombre de voies à explorer pour arriver à une solution est si grand que la seule puissance des ordinateurs est insuffisante pour atteindre des performances valables.
le cas du jeu d’échecs est ici révélateur. La recherche du meilleur coup à jouer, en s’en tenant aux seules règles de déplacement des pièces, nécessiterait à un certain moment du jeu d’envisager un nombre impressionnant de coups, de répliques possibles, de répliques aux répliques, beaucoup trop grand pour n’importe quelle machine actuelle et probablement du futur. À l’inverse, si l’on observe la démarche du joueur averti, on constate qu’elle se fonde non pas sur la puissance de calcul, mais sur l’utilisation de règles beaucoup plus subtiles : évaluation de l’état du jeu en nombre et disposition des pièces, appréciation des coups légaux possibles, mise en œuvre de stratégies offensives ou défensives comme la recherche du contrôle des positions centrales, l’échange favorable de pièces, etc.
Aussi la résolution automatique des problèmes évoqués précédemment nécessite-t-elle l’introduction de techniques spécifiques de l’IA, fondées sur des démarches de nature intelligente.
Il existe deux façons classiques de représenter la résolution d’un problème :
-
l’espace des états successifs d’un problème en cours de résolution est traduit sous forme d’un graphe dont chaque nœud représente un état et chacun des arcs une transition faisant passer d’un état à un autre. Une solution au problème consiste alors en une séquence finie d’opérateurs de transition permettant d’aller de l’état initial à un état but ;
-
la méthode de réduction de problème consiste à transformer le problème initial en un ensemble de sous-problèmes dont la solution est immédiate ou impossible. Cela s’effectue par décomposition en sous-problèmes...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Résolution de problèmes
BIBLIOGRAPHIE
-
(1) - AYEL (M.), ROUSSET (M.C.) - La cohérence dans les bases de connaissances. - 1990 Cépadues Toulouse.
-
(2) - CHEN (C.H.) - Fuzzy Logic and Neural Network Handbook. - 1996 McGraw Hill.
-
(3) - DEAN (T.) et al - Artificial Intelligence, Theory and Practice. - 1995 Addison-Wesley.
-
(4) - DUCOURNAU (R.) et al. (rédacteurs) - Langages et modèles à objets. - 1998 INRIA, collection Didactique.
-
(5) - FERBER (J.) - Les systèmes multiagents : vers une intelligence collective. - 1995 InterÉditions.
-
(6) - FRON (A.) - Programmation avec contraintes. - 1994 Addison-Wesley Paris.
-
...
ANNEXES
Association française d’intelligence artificielle (AFIA)
http://cambronne.polytechnique.fr/afia
Fédération européenne des associations nationales d’intelligence artificielle (ECCAI)
American Association for artificial intelligence (AAAI)
HAUT DE PAGECet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive