Présentation
Auteur(s)
-
Jean-Paul HATON : Professeur à l’université Henri-Poincaré, Nancy I - LORIA/INRIA - Membre de l’Institut universitaire de France
-
Marie-Christine HATON : Professeur à l’université Henri-Poincaré, Nancy I - LORIA/INRIA
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L’intelligence artificielle (IA) a vu son importance économique s’accroître considérablement par sa capacité à s’attaquer à de nouvelles classes de problèmes, différents de ceux traités par l’informatique classique. Ces problèmes relèvent d’activités humaines variées (perception, prise de décision, planification, diagnostic, interprétation de données, compréhension du langage, conception) et présentent la particularité commune de nécessiter une exploitation raisonnée d’une grande quantité de connaissances, pour l’essentiel spécifiques du domaine étudié et acquises auprès d’experts.
La conception de systèmes à bases de connaissances (SBC) capables de réaliser des fonctions de raisonnement symbolique constitue ainsi à l’heure actuelle une part importante des recherches et des développements en IA. De tels systèmes nécessitent en particulier une représentation adéquate des connaissances mises en jeu ainsi que des mécanismes efficaces d’exploitation de ces connaissances ou de raisonnement.
Cet article présente un panorama des SBC et de leurs applications. Dans un premier temps sont envisagés les modes de représentation des connaissances utilisés dans les SBC : représentations logiques, réseaux sémantiques, règles de production, objets structurés, modèles, graphes causaux. Le paragraphe suivant est consacré à la démarche de résolution de problèmes complètement formalisés, tout d’abord dans une approche générale puis dans le cadre des problèmes avec contraintes. La fin de ce paragraphe traite du problème de la planification qui requiert des techniques particulières. Sont ensuite présentés les divers modes de raisonnement qui constituent les principes de base du fonctionnement des SBC. La coopération ou la concurrence entre agents dans les systèmes multiagents, qui constituent un univers de recherche et de développement important, sont ensuite développés. Un domaine très actuel est celui de la capitalisation des connaissances et de la mémoire d’entreprise, à la suite duquel est également traité le cas de la fouille de données. Nous envisageons ensuite les méthodes et outils pour le développement de systèmes à bases de connaissances, avant de donner quelques indications sur les développements actuels et de donner quelques perspectives et conclusions.
VERSIONS
- Version courante de mai 2012 par Jean-Paul HATON, Marie-Christine HATON
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Raisonnement
Un raisonnement peut être défini comme un enchaînement d’énoncés ou de représentations symboliques conduit en fonction d’un but, ce but pouvant prendre des formes variées : démontrer, convaincre, élucider, interpréter, décider, justifier, expliquer, etc. Un tel enchaînement est une caractéristique importante d’un raisonnement. Il est en général non linéaire et nécessite des retours en arrière (backtracks), présents dans la quasi-totalité des systèmes d’IA tout comme dans la démarche humaine.
3.1 Contrôle du raisonnement
L’indéterminisme inhérent à la plupart des applications réelles et l’explosion combinatoire de solutions rend indispensable une supervision active, efficace et, si possible, intelligente de la succession des étapes d’un raisonnement. Le problème de conduite et de supervision du raisonnement, ou « contrôle » (mauvaise traduction du terme anglais control) est d’une importance majeure. Cette notion s’oppose à l’utilisation aveugle d’une base par application systématique de l’algorithme de raisonnement, de la même façon qu’en résolution de problèmes une recherche heuristique s’oppose au parcours systématique de l’espace de solutions.
Il existe deux grands types de démarches en résolution de problèmes pour conduire un raisonnement face à un certain but recherché :
-
partir des données disponibles sur l’état courant du problème à résoudre et utiliser les connaissances pour progresser vers le but. Cette démarche de raisonnement est qualifiée d’ascendante (bottom-up) ou encore guidée par les données. Nous avons vu que, dans les systèmes de production, elle correspond au chaînage avant des règles ;
-
partir du but et des connaissances disponibles pour transformer ce but en des sous-buts de plus en plus simples ou pour prédire une situation ou une hypothèse à vérifier sur les données du problème. Il s’agit d’un raisonnement descendant (top-down) ou guidé par les buts (chaînage arrière dans les systèmes de production).
Un tel contrôle du raisonnement est un métaraisonnement correspondant à un processus cognitif fondamental chez un être humain et qui nécessite un ensemble de...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Raisonnement
BIBLIOGRAPHIE
-
(1) - AYEL (M.), ROUSSET (M.C.) - La cohérence dans les bases de connaissances. - 1990 Cépadues Toulouse.
-
(2) - CHEN (C.H.) - Fuzzy Logic and Neural Network Handbook. - 1996 McGraw Hill.
-
(3) - DEAN (T.) et al - Artificial Intelligence, Theory and Practice. - 1995 Addison-Wesley.
-
(4) - DUCOURNAU (R.) et al. (rédacteurs) - Langages et modèles à objets. - 1998 INRIA, collection Didactique.
-
(5) - FERBER (J.) - Les systèmes multiagents : vers une intelligence collective. - 1995 InterÉditions.
-
(6) - FRON (A.) - Programmation avec contraintes. - 1994 Addison-Wesley Paris.
-
...
ANNEXES
Association française d’intelligence artificielle (AFIA)
http://cambronne.polytechnique.fr/afia
Fédération européenne des associations nationales d’intelligence artificielle (ECCAI)
American Association for artificial intelligence (AAAI)
HAUT DE PAGECet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive