Présentation

Article

1 - SYNTHÈSE DES MATÉRIAUX

2 - AVANTAGES FONDAMENTAUX

3 - DISPOSITIFS

4 - CARACTÉRISATION DES STRUCTURES

5 - TRANSISTORS MOS À DÉPLÉTION TOTALE

6 - TRANSISTORS PARTIELLEMENT DÉPLÉTÉS

7 - MINIATURISATION DES COMPOSANTS

8 - ARCHITECTURES INNOVANTES POUR TRANSISTORS SOI ULTIMES

9 - DÉFIS

10 - CONCLUSION

| Réf : E2380 v1

Avantages fondamentaux
Technologie silicium sur isolant (SOI)

Auteur(s) : Sorin CRISTOLOVEANU, Francis BALESTRA

Date de publication : 10 mai 2002

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Sorin CRISTOLOVEANU

  • Francis BALESTRA : Directeurs de recherche au CNRS, Institut de microélectronique, électromagnétisme et photonique (IMEP), École nationale supérieure d’électronique et de radioélectricité de Grenoble (ENSERG)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La technologie silicium sur isolant (« silicon on insulator » : SOI) a été inventée dans les années 1960-1970 pour satisfaire la demande de circuits intégrés durcis aux irradiations ionisantes. Le premier matériau, le silicium sur saphir (SOS), a été suivi par une variété de structures SOI. Leur dénominateur commun est d’offrir, grâce à un oxyde enterré, une parfaite isolation diélectrique entre la couche active des circuits et le substrat de silicium massif (figure 1). En effet, dans un transistor à effet de champ métal oxyde semi-conducteur (MOSFET), il n’y a que la couche superficielle de silicium, d’épaisseur 0,1 à 0,2 µm (c’est-à-dire moins de 0,1 % de l’épaisseur totale de la plaquette de silicium), qui est vraiment utile pour le transport des électrons. Le reste de la plaquette est responsable d’effets parasites indésirables, que l’on peut éviter en faisant appel à une solution de type SOI (figure 1) .

Depuis le début des années 1990, la mise au point de nouveaux matériaux SOI, ainsi que l’explosion des appareils électroniques portables, a promu le SOI comme une technologie de choix pour la fabrication de composants à basse consommation et à haute fréquence.

Nous décrivons l’état de l’art des technologies SOI, en commençant par les méthodes de synthèse des principaux matériaux. Les avantages essentiels des circuits SOI, par rapport aux dispositifs conventionnels sur silicium massif, sont présentés, avant de faire plus ample connaissance avec les composants typiques déjà fabriqués sur SOI. Les méthodes de caractérisation, in situ ou fondées sur l’inspection des composants, sont évoquées. Nous verrons que les mécanismes physiques qui régissent le fonctionnement des transistors MOS sur SOI, partiellement ou totalement désertés, sont assez différents de ceux habituellement rencontrés dans les MOSFET (« metal oxide semiconductor field effect transistor ») sur silicium massif. Le SOI a un fort potentiel pour repousser les frontières de la microélectronique, par la miniaturisation des transistors MOS conventionnels ou bien par les architectures innovantes qu’il peut accueillir. Nous discuterons finalement les défis qui restent à relever avant que le SOI puisse jouer le rôle dominant qu’il mérite sur le marché de la micro-électronique.

 

Ce travail a été réalisé en partie au sein du Centre de projets en microélectronique avancée (CPMA) créé par le CNRS, le Laboratoire d’électronique, de technologie et d’instrumentation (LETI) du Commissariat à l’énergie atomique (CEA), l’Institut national polytechnique de Grenoble (INPG) et l’Institut national de sciences appliquées (INSA). Nos collègues – du CPMA, de l’IMEP et de très loin –, porteurs du virus SOI, sont remerciés pour tout ce qu’ils nous ont appris.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e2380


Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

2. Avantages fondamentaux

Dans un circuit SOI, chaque transistor occupe un îlot individuel de silicium, isolé diélectriquement du substrat de silicium (figure 1 b ). L’isolation latérale des îlots permet de concevoir des architectures plus compactes que dans le silicium massif, car les caissons ou les tranchés d’isolation deviennent superflus. Quant à l’isolation verticale, garantie par l’oxyde enterré, elle élimine les inconvénients d’un substrat massif : mécanismes d’interférence entre dispositifs voisins (en particulier, l’effet de verrouillage ou latch-up), courants de fuite, etc.

Les régions de source et de drain s’étalent jusqu’à l’oxyde enterré de sorte que les jonctions ne présentent plus qu’une surface latérale et minimisée. Il en résulte une forte réduction des courants de fuite et des capacités de jonction, qui se traduit par un gain en vitesse des circuits, une plus faible consommation et une extension signifi-cative de la plage de fonctionnement vers les hautes températures.

La faible épaisseur de la source et du drain rend les transistors MOS sur SOI moins sensibles aux effets de canal court, induits par le partage de charge, entre grille et jonctions. Les MOSFET sur SOI s’avèrent ainsi moins récalcitrants vis-à-vis des contraintes de la miniaturisation ultime 7.2, que leurs cousins sur silicium massif.

Les transistors à film SOI mince sont exceptionnellement tolérants aux effets transitoires des irradiations ionisantes. En outre, le pic du champ électrique est plus faible dans le SOI par rapport au silicium massif, ce qui engendre une immunité supérieure à la dégradation induite par les porteurs chauds.

Mais c’est surtout dans le domaine très compétitif des circuits à faible tension et à faible consommation (LV/LP), où l’alimentation pourrait être fournie par une seule batterie rechargeable de 0,9 à 1,2 V, que le SOI exprime la plénitude de son potentiel. Une faible excursion de la tension de grille...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Avantages fondamentaux
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CRISTOLOVEANU (S.), LI (S.S.) -   Electrical Characterization of SOI Materials and Devices  -  . Kluwer, Norwell (1995).

  • (2) - CRISTOLOVEANU (S.) -   Silicon films on sapphire  -  . Rep. Prog. Phys., 3, 1987, 327.

  • (3) - JOHNSON (R.A.), DE LA HOUSSEY (P.R.), CHANG (C.E.), CHEN (P.-F.), WOOD (M.E.), GARCIA (G.A.), LAGNADO (I.), ASBECK (P.M.) -   Advanced thin-film silicon-on-sapphire technology : microwave circuit applications  -  . IEEE Trans. Electron Devices, 45, 1998, 1047.

  • (4) - MORIYASU (Y.), MORISHITA (T.), MATSUI (M.), YASUJIMA (A.) -   Preparation of high quality silicon on sapphire  -  . Silicon-On-Insulator Technology and Devices IX, Electrochemical Soc., Pennington, 99–3, 1999, 137-142.

  • (5) - CRISTOLOVEANU (S.) -   SOI : a metamorphosis of silicon  -  . IEEE Magazine : Circuits & Devices 99–18, 15 (1), 1999, 26-32.

  • (6) - CRISTOLOVEANU (S.) -   A...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS